2010A&A...521A..33R


C.D.S. - SIMBAD4 rel 1.7 - 2020.10.24CEST17:45:57

2010A&A...521A..33R - Astronomy and Astrophysics, volume 521, A33-33 (2010/10-1)

A possible signature of terrestrial planet formation in the chemical composition of solar analogs.

RAMIREZ I., ASPLUND M., BAUMANN P., MELENDEZ J. and BENSBY T.

Abstract (from CDS):

Recent studies have shown that the elemental abundances in the Sun are anomalous when compared to most (about 85%) nearby solar twin stars. Compared to its twins, the Sun exhibits a deficiency of refractory elements (those with condensation temperatures TC>900K) relative to volatiles (TC≲900K). This finding is speculated to be a signature of the planet formation that occurred more efficiently around the Sun compared with the majority of solar twins. Furthermore, within this scenario, it seems more likely that the abundance patterns found are specifically related to the formation of terrestrial planets. In this work we analyze abundance results from six large independent stellar abundance surveys to determine whether they confirm or reject this observational finding. We show that the elemental abundances derived for solar analogs in these six studies are consistent with the TC trend suggested as a planet formation signature. The same conclusion is reached when those results are averaged heterogeneously. We also investigate the dependency of the abundances with first ionization potential (FIP), which correlates well with TC. A trend with FIP would suggest a different origin for the abundance patterns found, but we show that the correlation with TC is statistically more significant. We encourage similar investigations of metal-rich solar analogs and late F-type dwarf stars, for which the hypothesis of a planet formation signature in the elemental abundances makes very specific predictions. Finally, we examine a recent paper that claims that the abundance patterns of two stars hosting super-Earth like planets contradict the planet formation signature hypothesis. Instead, we find that the chemical compositions of these two stars are fully compatible with our hypothesis.

Abstract Copyright:

Journal keyword(s): stars: abundances - Sun: abundances - planetary systems

Simbad objects: 2

goto Full paper

goto View the reference in ADS

Number of rows : 2

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 HD 1461 PM* 00 18 41.8673684261 -08 03 10.805762856   7.14 6.46     G3VFe0.5 319 1
2 * mu. Ara PM* 17 44 08.7036342277 -51 50 02.591049123   5.85 5.15     G3IV-V 468 2

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2010A&A...521A..33R and select 'bookmark this link' or equivalent in the popup menu


2020.10.24-17:45:57

© Université de Strasbourg/CNRS

    • Contact