2010A&A...523A..18D


Query : 2010A&A...523A..18D

2010A&A...523A..18D - Astronomy and Astrophysics, volume 523, A18-18 (2010/11-2)

Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae.

DE BECK E., DECIN L., DE KOTER A., JUSTTANONT K., VERHOELST T., KEMPER F. and MENTEN K.M.

Abstract (from CDS):

The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4x10–8M/yr up to 8x10–5M/yr. For red supergiants they reach values between 2x10–7M/yr and 3x10–4M/yr. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the asympotic giant branch stars and their derived mass-loss rates, with a levelling off at ∼3x10–5M/yr for periods exceeding 850days.

Abstract Copyright:

Journal keyword(s): stars: AGB and post-AGB - supergiants - stars: mass-loss

Simbad objects: 71

goto Full paper

goto View the references in ADS

Number of rows : 71
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 V* T Cet S* 00 21 46.2726376677 -20 03 28.888739999   7.32 5.74     M5-6Se 146 0
2 IRC +10011 OH* 01 06 25.9879717848 +12 35 52.896392052   20.7   18.26 14.01 M8 417 0
3 V* R Scl C* 01 26 58.0939182720 -32 32 35.439234828 17.26 9.59 5.72 3.69 2.30 C-N5+ 329 0
4 OH 127.8-00.0 OH* 01 33 51.21048 +62 26 53.2032           O-rich 181 0
5 * omi Cet Mi* 02 19 20.79210 -02 58 39.4956   7.63 6.53 5.03   M5-9IIIe+DA 1513 0
6 V* IK Tau OH* 03 53 28.8924743304 +11 24 21.895183368 16.99 17.03 13.39 7.29 3.20 M7-11 626 0
7 V* TX Cam Mi* 05 00 51.1627935408 +56 10 54.041462220       14.02   M9-9.5 347 0
8 IRC +50137 OH* 05 11 19.4506093584 +52 52 33.235824324           M10 173 0
9 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 16993 1
10 * alf Ori s*r 05 55 10.30536 +07 24 25.4304 4.38 2.27 0.42 -1.17 -2.45 M1-M2Ia-Iab 1634 0
11 HD 44179 pA* 06 19 58.2185496 -10 38 14.706068 9.51 9.33 9.02     B9Ib/II 755 0
12 V* VY CMa s*r 07 22 58.3261352189 -25 46 03.194390594 12.01 10.068 8.691 7.938   M5Iae 1087 0
13 OH 231.8+04.2 OH* 07 42 16.947 -14 42 50.20           M10III+A 530 0
14 V* R Leo Mi* 09 47 33.4839808805 +11 25 43.823283729 9.22 8.94 7.53 3.39 0.12 M7-9e 909 1
15 IRC +10216 C* 09 47 57.40632 +13 16 43.5648           C9,5e 2304 0
16 V* RW LMi C* 10 16 02.2777043904 +30 34 19.045098516       15.27   C4,3e 390 0
17 MR 22 PN 10 21 33.85920 -58 05 47.6628           A2Ie 101 0
18 V* U Ant C* 10 35 12.8510147472 -39 33 45.324020448 15.32 8.22 5.38 3.18 1.86 C-N3 149 0
19 V* U Hya C* 10 37 33.2729535 -13 23 04.352923 13.29 7.51 4.82 3.05 1.78 C-N5 297 0
20 V* V Hya C* 10 51 37.2615873024 -21 15 00.333928044   12.23 6.80 7.42   C-N:6 360 0
21 V* Y CVn C* 12 45 07.8260815656 +45 26 24.926308404 14.03 7.41 4.87 3.12 1.74 C-N5 474 0
22 V* R Hya Mi* 13 29 42.7801586466 -23 16 52.751628992 7.26 6.58 4.97 2.27 -0.15 M6-9e 484 0
23 IRAS 13428-6232 PN? 13 46 20.58093 -62 47 59.7770           ~ 29 0
24 V* W Hya Mi* 13 49 02.0018313132 -28 22 03.532006894   8.97 7.70     M7.5-9e 635 0
25 V* RX Boo AB* 14 24 11.6253191184 +25 42 13.394221596   9.23 8.60     M7.5-M8 437 0
26 WOS 48 C* 15 23 05.0730770544 -51 25 58.762691652   17.85 16.66 14.51 10.18 C 131 1
27 * g Her AB* 16 28 38.5485851 +41 52 54.040593 7.70 6.53 5.01 2.49 0.26 M6-III 376 0
28 * alf Sco s*r 16 29 24.45970 -26 25 55.2094 4.08 2.75 0.91 -0.64 -1.87 M1.5Iab+B2Vn 740 0
29 V* V438 Oph LP* 17 14 39.7815252576 +11 04 09.970384872   10.53 9.29     M8 52 0
30 RAFGL 6815S pA* 17 18 19.8040606320 -32 27 21.547417932           G2I 148 0
31 RAFGL 5379 OH* 17 44 24.0074369832 -31 55 35.414175828           O-rich 88 0
32 IRAS 17443-2949 PN 17 47 35.32488 -29 50 53.3940           O-rich 31 0
33 RAFGL 2019 OH* 17 53 18.8416434624 -26 56 37.489065396           M8-9 74 0
34 V* VX Sgr s*r 18 08 04.0442790744 -22 13 26.600899044 11.72 9.41 6.52 3.90 2.11 M8.5Ia 587 0
35 IRAS 18059-3211 PN? 18 09 13.39776 -32 10 50.0340           A0III: 24 0
36 IRAS 18100-1915 OH* 18 13 03.08064 -19 14 18.8700           O-rich 25 0
37 OH 021.5+00.5 OH* 18 28 30.93720 -09 58 14.3184           O-rich 92 0
38 RAFGL 5502 SFR 18 33 30.399 -05 01 02.73           ~ 23 0
39 OH 024.7+00.3 OH* 18 35 29.21616 -07 13 10.9740           O-rich 37 0
40 RAFGL 2199 Mi* 18 35 46.8089368944 +05 35 50.544710088           O-rich 62 1
41 OH 026.5+00.6 OH* 18 37 32.50920 -05 23 59.1936           O-rich 300 1
42 OH 025.5-00.3 OH* 18 38 50.54280 -06 44 49.6068           O-rich 24 0
43 IRAS 18361-0647 mul 18 38 50.7 -06 44 54           ~ 22 0
44 IRC +20370 C* 18 41 54.5501446200 +17 41 08.425834728       13.56   C7,3e 115 0
45 OH 030.7+00.4 OH* 18 45 52.39728 -01 46 42.4776           O-rich 68 1
46 V* R Sct cC* 18 47 28.9498974024 -05 42 18.542611800 8.30 6.67 5.20 4.14 3.37 K4/5pec 314 0
47 OH 030.1-00.7 OH* 18 48 41.98728 -02 50 29.5080           O-rich 98 0
48 V* S Sct C* 18 50 20.0367791256 -07 54 27.429169356 13.93 9.89 6.80     C-N5 208 0
49 OH 032.0-00.5 OH* 18 51 26.25600 -01 03 52.3620           O-rich 67 0
50 OH 032.8-00.3 OH* 18 52 22.25472 -00 14 11.8428           O-rich 122 0
51 OH 042.3-00.1 OH* 19 09 08.32632 +08 16 33.6504           O-rich 85 0
52 IRAS 19110+1045 Y*O 19 13 22.0427 +10 50 53.336           ~ 125 0
53 HD 179821 pA* 19 13 58.6082398776 +00 07 31.935181836 10.81 9.694 8.19     G4_0-Ia 236 0
54 V* W Aql S* 19 15 23.3572741560 -07 02 50.333886492   12.72 10.14 10.21   S6/6e 228 0
55 OH 044.8-02.3 OH* 19 21 36.6364189224 +09 27 56.688388992           O-rich 86 0
56 IRC +10420 pA* 19 26 48.0979492536 +11 21 16.758531216   13.98 11.66     F8Ia+e 473 0
57 OH 055.0+00.7 OH* 19 30 29.47536 +19 50 41.0352           O-rich 49 0
58 * chi Cyg S* 19 50 33.9213430345 +32 54 50.575531294 7.02 6.06 4.24 1.81 -0.01 S6-9/1-2e 687 0
59 IRC -10529 OH* 20 10 27.8731455576 -06 16 13.758742596         15.49 M: 139 0
60 V* X Pav AB* 20 11 45.8638935384 -59 56 12.809676840   9.69 9.20     M8III 67 1
61 V* RZ Sgr S* 20 15 28.4023889376 -44 24 37.478466072   11.21 10.40     S4,4ep 72 0
62 V* V Cyg C* 20 41 18.2676815496 +48 08 28.810980420   14.05 7.70 6.67   C7,4eJ 304 0
63 NML Cyg s*r 20 46 25.5392819088 +40 06 59.464289232           M7/8 500 0
64 * mu. Cep s*r 21 43 30.4610574 +58 46 48.160181 8.85 6.43 4.08 1.98 0.22 M2-Ia 659 1
65 V* EP Aqr AB* 21 46 31.8494911920 -02 12 45.928582560   7.93 6.78     M7-III: 237 0
66 IRAS 21554+6204 OH* 21 56 58.19496 +62 18 46.0152           O-rich 42 0
67 RAFGL 2885 OH* 22 19 27.47784 +59 51 21.7080           O-rich 135 0
68 * pi.01 Gru S* 22 22 44.2083897000 -45 56 52.791160956 10.52 8.62 6.55 3.19 0.52 S5,7: 187 0
69 RAFGL 3068 C* 23 19 12.60744 +17 11 33.1332           C 268 0
70 IRC +40540 C* 23 34 27.5185864392 +43 33 01.323347256     15.12     C8,3.5eJ 177 0
71 V* R Cas Mi* 23 58 24.8682785040 +51 23 19.713029388 6.71 6.63 4.80     M6.5-9e 697 0

To bookmark this query, right click on this link: simbad:objects in 2010A&A...523A..18D and select 'bookmark this link' or equivalent in the popup menu


2023.10.03-10:27:20

© Université de Strasbourg/CNRS

    • Contact