C.D.S. - SIMBAD4 rel 1.7 - 2020.10.25CET09:29:01

2011A&A...528A..87M - Astronomy and Astrophysics, volume 528A, 87-87 (2011/4-1)

A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars.


Abstract (from CDS):

We evaluate non-local thermodynamical equilibrium (non-LTE) line formation for the two ions of iron and check the ionization equilibrium between FeI and FeII in model atmospheres of the cool reference stars based on the best available complete model atom for neutral and singly-ionized iron. We present a comprehensive model atom for Fe with more than 3000 measured and predicted energy levels. As a test and first application of the improved model atom, iron abundances are determined for the Sun and five stars with well determined stellar parameters and high-quality observed spectra. The efficiency of inelastic collisions with hydrogen atoms in the statistical equilibrium of iron is empirically estimated from inspection of their different influence on the FeI and FeII lines in the selected stars. Non-LTE leads to systematically depleted total absorption in the FeI lines and to positive abundance corrections in agreement with the previous studies, however, the magnitude of such corrections is smaller compared to the earlier results. These non-LTE corrections do not exceed 0.1dex for the solar metallicity and mildly metal-deficient stars, and they vary within 0.21dex and 0.35dex in the very metal-poor stars HD 84937 and HD 122563, respectively, depending on the assumed efficiency of collisions with hydrogen atoms. Based on the analysis of the FeI/FeII ionization equilibrium in these two stars, we recommend to apply the Drawin formalism in non-LTE studies of Fe with a scaling factor of 0.1. For the FeII lines non-LTE corrections do not exceed 0.01dex in absolute value over the whole range of stellar parameters that are considered. This study reveals two problems. The first one is that gf-values available for the FeI and FeII lines are not accurate enough to pursue high-accuracy absolute stellar abundance determinations. For the Sun, the mean non-LTE abundance obtained from 54 FeI lines is 7.56±0.09 and the mean abundance from 18 FeII lines varies between 7.41±0.11 and 7.56±0.05 depending on the source of the gf-values. The second problem is that lines of FeI give, on average, a 0.1dex lower abundance compared with those of FeII lines for HD61421 and HD102870, even when applying a differential line-by-line analysis with regard to the Sun. A disparity between neutral atoms and first ions points to problems of stellar atmosphere modelling or/and effective temperature determination.

Abstract Copyright:

Journal keyword(s): atomic data - atomic processes - line: formation - stars: atmospheres - stars: fundamental parameters

Simbad objects: 6

goto Full paper

goto View the reference in ADS

Number of rows : 6

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 * tau Cet PM* 01 44 04.0834226 -15 56 14.926552 4.43 4.22 3.50 2.88 2.41 G8V 1101 1
2 * alf CMi SB* 07 39 18.11950 +05 13 29.9552 0.82 0.79 0.37 -0.05 -0.28 F5IV-V+DQZ 1765 0
3 HD 84937 PM* 09 48 56.09801 +13 44 39.3237 8.49 8.68 8.32 7.97 7.70 F8Vm-5 723 0
4 * bet Vir PM* 11 50 41.7182390 +01 45 52.991019 4.26 4.15 3.60 3.13 2.85 F9V 859 0
5 HD 122563 Pe* 14 02 31.8456299772 +09 41 09.942736952 7.47 7.10 6.19 5.37 4.79 G8:III:Fe-5 760 0
6 HD 140283 Pe* 15 43 03.0967798658 -10 56 00.595803430 7.508 7.711 7.212 6.63 8.21 F9VkA5mA1 862 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2011A&A...528A..87M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact