2011A&A...530A..61H


Query : 2011A&A...530A..61H

2011A&A...530A..61H - Astronomy and Astrophysics, volume 530A, 61-61 (2011/6-1)

Oxygen depletion in dense molecular clouds: a clue to a low O2 abundance?.

HINCELIN U., WAKELAM V., HERSANT F., GUILLOTEAU S., LOISON J.C., HONVAULT P. and TROE J.

Abstract (from CDS):

Dark cloud chemical models usually predict large amounts of O2, often above observational limits. We investigate the reason for this discrepancy from a theoretical point of view, inspired by the studies of Jenkins and Whittet on oxygen depletion. We use the gas-grain code Nautilus with an up-to-date gas-phase network to study the sensitivity of the molecular oxygen abundance to the oxygen elemental abundance. We use the rate coefficient for the reaction O+OH at 10K recommended by the KIDA (KInetic Database for Astrochemistry) experts. The updates of rate coefficients and branching ratios of the reactions of our gas-phase chemical network, especially N+CN and H3++O, have changed the model sensitivity to the oxygen elemental abundance. In addition, the gas-phase abundances calculated with our gas-grain model are less sensitive to the elemental C/O ratio than those computed with a pure gas-phase model. The grain surface chemistry plays the role of a buffer absorbing most of the extra carbon. Finally, to reproduce the low abundance of molecular oxygen observed in dark clouds at all times, we need an oxygen elemental abundance smaller than 1.6x10–4. The chemistry of molecular oxygen in dense clouds is quite sensitive to model parameters that are not necessarily well constrained. That O2 abundance may be sensitive to nitrogen chemistry is an indication of the complexity of interstellar chemistry.

Abstract Copyright:

Journal keyword(s): astrochemistry - ISM: abundances - ISM: molecules - ISM: individual objects: L134N - ISM: individual objects: TMC-1

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 TMC-1 MoC 04 41 45.9 +25 41 27           ~ 1580 0
2 LDN 183 MoC 15 54 12.2 -02 49 42           ~ 731 1
3 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3478 1
4 NAME dze Oph Cloud Cld 16 37 09 -10 34.0           ~ 108 0

To bookmark this query, right click on this link: simbad:objects in 2011A&A...530A..61H and select 'bookmark this link' or equivalent in the popup menu


2023.03.29-13:12:23

© Université de Strasbourg/CNRS

    • Contact