2011A&A...533A..24W


C.D.S. - SIMBAD4 rel 1.7 - 2021.03.02CET15:19:36

2011A&A...533A..24W - Astronomy and Astrophysics, volume 533A, 24-24 (2011/9-1)

Observational tests of interstellar methanol formation.

WIRSTROEM E.S., GEPPERT W.D., HJALMARSON A., PERSSON C.M., BLACK J.H., BERGMAN P., MILLAR T.J., HAMBERG M. and VIGREN E.

Abstract (from CDS):

It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). We have observed the rotational transition quartets J=2K-1K of 12CH3OH and 13CH3OH at 96.7 and 94.4GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J=1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40'', towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.

Abstract Copyright:

Journal keyword(s): ISM: molecules - astrochemistry - radio lines: ISM

Simbad objects: 14

goto Full paper

goto View the reference in ADS

Number of rows : 14

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 NAME W 3 IRS 5 Cluster Cl* 02 25 42 +62 06.1           ~ 73 1
2 [BCB89] IRS 2 Y*O 05 41 45.81 -01 54 29.8           B 95 0
3 RAFGL 989 Y*O 06 41 10.1592954288 +09 29 33.635497596   17.4 16.8 18.26 17.28 B2 245 0
4 [WBN74] W 51 IRS 2 SFR 19 23 40.05 +14 31 07.1           ~ 256 0
5 W 51m Rad 19 23.7 +14 30           ~ 50 0
6 W 51e1 Rad 19 23 43.77 +14 30 25.9           ~ 117 0
7 W 51e2 Rad 19 23 43.90 +14 30 34.8           ~ 187 0
8 W 51 SNR 19 23 50 +14 06.0           ~ 1174 1
9 RAFGL 2591 Y*O 20 29 25.03656 +40 11 20.3316           ~ 573 0
10 [MBS2007c] CygX-N44 Rad 20 39 01.01 +42 22 50.2           ~ 363 0
11 GRS G081.70 +00.50 SFR 20 39 01.6 +42 19 38           O4.5 962 0
12 NAME SH 2-140 IRS 1 Y*O 22 19 18.277 +63 18 45.82           ~ 192 0
13 [WBN74] NGC 7538 IRS 1 Y*O 23 13 45.318 +61 28 11.69           ~ 374 3
14 IRAS 23118+6110 Y*O 23 14 01.63 +61 27 20.2           ~ 349 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2011A&A...533A..24W and select 'bookmark this link' or equivalent in the popup menu


2021.03.02-15:19:36

© Université de Strasbourg/CNRS

    • Contact