C.D.S. - SIMBAD4 rel 1.7 - 2020.07.12CEST12:28:32

2011A&A...533A.111M - Astronomy and Astrophysics, volume 533A, 111-111 (2011/9-1)

Detection of jet precession in the active nucleus of M 81.


Abstract (from CDS):

We report on very-long-baseline-interferometry (VLBI) monitoring observations of the low-luminosity active galactic nucleus (LLAGN) in the galaxy M81 at the frequencies of 1.7, 2.3, 5.0, and 8.4GHz. The observations reported here are phase-referenced to the supernova SN1993J (located in the same galaxy) and cover from late 1993 to late 2005. The large amount of available observations allows us to study the stability of the AGN position in the frame of its host galaxy at different frequencies and chromatic effects in the jet morphology, together with their time evolution. The source consists at all frequencies of a slightly resolved core and a small jet extension towards the northeast direction (position angle of ∼65 degrees) in agreement with previous publications. We find that the position of the intensity peak in the images at 8.4GHz is very stable in the galactic frame of M81 (proper motion upper limit about 10 µas per year). We confirm previous reports that the peaks at all frequencies are systematically shifted among them, possibly due to opacity effects in the jet as predicted by the standard relativistic jet model. We use this model, under plausible assumptions, to estimate the magnetic field in the jet close to the jet base and the mass of the central black hole. We obtain a black-hole mass of ∼2x107M, comparable to estimates previously reported using different approaches, but the magnetic fields obtained are 103-104 times lower than previous estimates. We find that the positions of the cores at 1.7, 2.3, and 5.0GHz are less stable than that at 8.4GHz and evolve systematically, shifting southward at a rate of several tens of µas per year. The evolution in the jet orientation seems to be related to changes in the inclination of the cores at all frequencies. These results can be interpreted as due to a precessing jet. The evolving jet orientation also seems to be related to a flare in the peak flux densities at 5.0 and 8.4GHz, which lasts ∼4 years (from mid 1997 to mid 2001). An increase in the accretion rate of the black hole, and its correlation with the jet luminosity via the disk-jet connection model, seems insufficient to explain this long flare and the simultaneous evolution in the jet orientation. A continued monitoring of the flux density and the jet structure evolution in this LLAGN will be necessary to further confirm our jet precession model.

Abstract Copyright:

Journal keyword(s): galaxies: jets - astrometry - galaxies: active - radiation mechanisms: non-thermal - radio continuum: galaxies - galaxies: individual: M 81

Simbad objects: 7

goto Full paper

goto View the reference in ADS

Number of rows : 7

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 Mrk 1501 Sy1 00 10 31.0058529490 +10 58 29.505989476   15.96 15.40 12.22   ~ 640 0
2 QSO B0605-0834 QSO 06 07 59.69923743 -08 34 49.9781718     18.5 17.70   ~ 394 1
3 SN 1993J SN* 09 55 24.77476 +69 01 13.7026   10.8 12.0     SNIIb 1253 1
4 M 81 Sy2 09 55 33.17306143 +69 03 55.0609270   7.89 6.94     ~ 3965 5
5 NAME Centaurus A Sy2 13 25 27.61509104 -43 01 08.8056025   8.18 6.84 6.66   ~ 3999 3
6 3C 345 QSO 16 42 58.8100340220 +39 48 36.999540578   16.81 16.59 16.84   ~ 1554 2
7 NAME Sgr A* X 17 45 40.03599 -29 00 28.1699           ~ 3452 3

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2011A&A...533A.111M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact