2012A&A...538A.102S -
Astronomy and Astrophysics, volume 538A, 102-102 (2012/2-1)
The flow of interstellar dust into the solar system.
STERKEN V.J., ALTOBELLI N., KEMPF S., SCHWEHM G., SRAMA R. and GRUEN E.
Abstract (from CDS):
Interstellar dust (ISD) is a major component in the formation and evolution of stars, stellar systems, and planets. Astronomical observations of interstellar extinction and polarization, and of the infrared emission of the dust, are the most commonly used technique for characterizing interstellar dust. Besides this, the interstellar dust from the local interstellar cloud enters the solar system owing to the relative motion of the Sun with respect to this cloud. Once in the solar system, in-situ observations can be made by spacecraft using impact ionization detectors and time-of-flight spectrometers like the ones flown on the Cassini, Ulysses, and Galileo, spacecrafts. Also a sample return can be done, as in the Stardust mission. Once in the solar system, the trajectories of these dust grains are shaped by gravitational, solar radiation pressure, and Lorentz forces. The Lorentz forces result from the interaction of the charged dust particles with the interplanetary magnetic field. The ISD densities in the solar system thus depend both on the location in the solar system and on time, correlated to the solar cycle. This paper aims at giving the reader insight into the flow patterns of ISD when it moves through the solar system. This is useful for designing future in-situ or sample return missions or for knowing whether for specific missions, simplified assumptions can be used for the dust flux and direction, or whether full simulations are needed. We characterize the flow of ISD through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field and discuss the influence of the dust parameters on the resulting flow patterns. Dust densities, fluxes, and directionalities are derived from the trajectory simulations. Different graphics representations are used to gain insight into the flow patterns. As an illustration of how the model can be used, we predict the fluxes and directionalities of the ISD for the Cassini mission. The characteristics of the flow of ISD through the solar system have been investigated to gain insight in the patterns of the flow. The modeling can also be used for predicting dust fluxes for different space missions or planets, and for understanding spacecraft measurements, such as those from Ulysses, Cassini, and Stardust.
Abstract Copyright:
∼
Journal keyword(s):
ISM: general - interplanetary medium - zodiacal dust
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Other object types:
Cld
([GLV95])
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
04 38 00.3 +31 05 22
[
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
Gal
coord.
(ep=J2000) :
170.0000 -10.0000
[
]
', {sourceSize:12, color:'#30a090'})); aladin.on('objectClicked', function(object) { var objName=object.data.MAIN_ID; aladin.showPopup(object.ra,object.dec,'',''+ objName+''); });" title="Show Simbad objects">
Overlay
points in this preview
All
(CDSPortal)
Send to
The link on the acronym of the identifiers give access to the
information for this acronym in the dictionary of nomenclature.
Identifiers (4) :
An access of full data is available using the icon Vizier near the identifier of the catalogue
References (284 between 1850 and 2024) (Total 284)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2012A&A...538A.102S and select 'bookmark this link' or equivalent in the popup menu