2012A&A...538L...2F -
Astronomy and Astrophysics, volume 538, L2-2 (2012/2-1)
Non-standard s-process in low metallicity massive rotating stars.
FRISCHKNECHT U., HIRSCHI R. and THIELEMANN F.-K.
Abstract (from CDS):
Rotation is known to have a strong impact on the nucleosynthesis of light elements in massive stars, mainly by inducing mixing in radiative zones. In particular, rotation boosts the primary nitrogen production, and models of rotating stars are able to reproduce the nitrogen observed in low-metallicity halo stars. Here we present the first grid of stellar models for rotating massive stars at low metallicity, where a full s-process network is used to study the impact of rotation-induced mixing on the neutron capture nucleosynthesis of heavy elements. We used the Geneva stellar evolution code that includes an enlarged reaction network with nuclear species up to bismuth to calculate 25M☉ models at three different metallicities (Z=10–3, 10–5, and 10–7) and with different initial rotation rates. First, we confirm that rotation-induced mixing (shear) between the convective H-shell and He-core leads to a large production of primary 22Ne (0.1 to 1% in mass fraction), which is the main neutron source for the s-process in massive stars. Therefore rotation boosts the s-process in massive stars at all metallicities. Second, the neutron-to-seed ratio increases with decreasing Z in models including rotation, which leads to the complete consumption of all iron seeds at metallicities below Z=10–3 by the end of core He-burning. Thus at low Z, the iron seeds are the main limitation for this boosted s-process. Third, as the metallicity decreases, the production of elements up to the Ba peak increases at the expense of the elements of the Sr peak. We studied the impact of the initial rotation rate and of the highly uncertain 17O(α,γ) rate (which strongly affects the strength of 16O as a neutron poison) on our results. This study shows that rotating models can produce significant amounts of elements up to Ba over a wide range of Z, which has important consequences for our understanding of the formation of these elements in low-metallicity environments like the halo of our galaxy and globular clusters. Fourth, compared to the He-core, the primary 22Ne production induced by rotation in the He-shell is even higher (greater than 1% in mass fraction at all metallicities), which could open the door for an explosive neutron capture nucleosynthesis in the He-shell, with a primary neutron source.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Other object types:
G
(2008ApJ,ESO,...),
gam
(1FGL,2FGL,...),
X
(PBC,XSS)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
00 50 53.0 -73 04 18
[
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
Gal
coord.
(ep=J2000) :
302.8084 -44.3277
[
]
Syntax of proper motions is : "pm-ra pm-dec [error ellipse] quality bibcode"
pm-ra : mu-ra*cos(dec) (expressed in the ICRS system in mas/yr)
pm-dec : mu-dec (expressed in the ICRS system in mas/yr)
[error ellipse] : error major axis and minor axis (in mas), orientation angle (in deg)
quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
Syntax of radial velocity (or/and redshift) is : "value [error] (wavelength) quality bibcode"
value : radial velocity or/and redshift (Heliocentric frame) according to your Output Options
(redshift may be not displayed if the data value is <0 and the database inside value is a radial velocity)
[error] : error of the corresponding value displayed before
(wavelength) : wavelength range of the measurement : Rad, mm, IR, Opt, UV, Xray, Gam or '∼'(unknown)
quality : flag of quality ( A=best quality -> E=worst quality, {� } =unknown quality)
References (10538 between 1850 and 2023) (Total 10538)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2012A&A...538L...2F and select 'bookmark this link' or equivalent in the popup menu