2012A&A...542A..20M


C.D.S. - SIMBAD4 rel 1.7 - 2019.11.21CET23:36:43

2012A&A...542A..20M - Astronomy and Astrophysics, volume 542A, 20-20 (2012/6-1)

Quasi-stellar objects in the ALHAMBRA survey. I. Photometric redshift accuracy based on 23 optical-NIR filter photometry.

MATUTE I., MARQUEZ I., MASEGOSA J., HUSILLOS C., DEL OLMO A., PEREA J., ALFARO E.J., FERNANDEZ-SOTO A., MOLES M., AGUERRI J.A.L., APARICIO-VILLEGAS T., BENITEZ N., BROADHURST T., CABRERA-CANO J., CASTANDER F.J., CEPA J., CERVINO M., CRISTOBAL-HORNILLOS D., INFANTE L., GONZALEZ DELGADO R.M., MARTINEZ V.J., MOLINO A., PRADA F. and QUINTANA J.M.

Abstract (from CDS):

Even the spectroscopic capabilities of today's ground and space-based observatories can not keep up with the enormous flow of detections (>105deg2) unveiled in modern cosmological surveys as: i) would be required enormous telescope time to perform the spectroscopic follow-ups and ii) spectra remain unattainable for the fainter detected population. In the past decade, the typical accuracy of photometric redshift (photo-z) determination has drastically improved. Nowdays, it has become a perfect complement to spectroscopy, closing the gap between photometric surveys and their spectroscopic follow-ups. The photo-z precision for active galactic nuclei (AGN) has always lagged behind that for the galaxy population owing to the lack of proper templates and their intrinsic variability. Our goal is to characterize the ability of the Advanced Large, Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey in assigning accurate photo-z's to broad-line AGN (BLAGN) and quasi-stellar objects (QSOs) based on their ALHAMBRA very-low-resolution optical-near-infrared (NIR) spectroscopy. This will serve as a benchmark for any future compilation of ALHAMBRA selected QSOs and the basis for the statistical analysis required to derive luminosity functions up to z∼5. We selected a sample of spectroscopically identified BLAGN and QSOs and used a library of templates (including the SEDs of AGN and both normal and starburst galaxies, as well as stars) to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ∼88% of the 170 spectroscopically identified BLAGN/QSOs over 2.5deg2 in different areas of the survey and brighter than m678=23.5 (equivalent to rSLOAN∼24.0). The derived photo-z accuracy is below 1% and is comparable to the most recent results in other cosmological fields that use photometric information over a wider wavelength range. The fraction of outliers (∼12%) is mainly caused by the larger photometric errors for the faintest sources and the intrinsic variability of the BLAGN/QSO population. A small fraction of outliers may have an incorrectly assigned spectroscopic redshift. The definition of the ALHAMBRA survey in terms of the number of filters, filter properties, areal coverage, and depth is able to provide photometric redshifts for BLAGN/QSOs with a precision similar to any previous survey that makes use of medium-band optical photometry. In agreement with previous literature results, our analysis also reveals that, in the 0<z<4 redshift interval, very accurate photo-z can be obtained without the use of NIR broadband photometry at the expense of a slight increase in the outliers. The importance of NIR data is expected to increase at higher z (z>4). These results are relevant for the design of future optical follow-ups of surveys containing a large fraction of BLAGN, such as many X-ray or radio surveys.

Abstract Copyright:

Journal keyword(s): galaxies: active - cosmology: observations - quasars: general - galaxies: evolution - galaxies: distances and redshifts

Simbad objects: 16

goto Full paper

goto View the reference in ADS

Number of rows : 16

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 NAME SMC G 00 52 38.0 -72 48 01   2.79 2.2     ~ 9116 1
2 NAME Chandra Deep Field-South reg 03 32 28.0 -27 48 30           ~ 1755 1
3 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 14356 1
4 M 82 IG 09 55 52.430 +69 40 46.93 9.61 9.30 8.41     ~ 5228 6
5 NAME COSMOS Field reg 10 00 28.60 +02 12 21.0           ~ 1900 0
6 NAME Lockman Hole reg 10 45 00.0 +58 00 00           ~ 732 0
7 NAME Hubble Deep Field reg 12 36 49.5 +62 12 58           ~ 1809 1
8 NAME GOODS-N Field reg 12 36 55.0 +62 14 15           ~ 878 1
9 Mrk 231 Sy1 12 56 14.2340989340 +56 52 25.238555193   14.68 13.84     ~ 1739 3
10 NAME Extended Groth Strip reg 14 19 +52.8           ~ 544 0
11 IC 4553 SyG 15 34 57.22396 +23 30 11.6084   14.76 13.88     ~ 2628 4
12 ELAIS N1 reg 16 10 01 +54 30.6           ~ 291 0
13 NGC 6240 Sy2 16 52 58.861 +02 24 03.55   14.31 13.37     ~ 1447 2
14 NAME Superantennae Sy2 19 31 21.4252803168 -72 39 21.448768732   17.39 16.37 14.65   ~ 275 2
15 ESO 286-19 LIN 20 58 26.8182983654 -42 38 59.418569678   14.79 14.79 14.20   ~ 244 0
16 NAME South America H2G 22 51 49.307 -17 52 23.96   16.97       ~ 282 3

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2012A&A...542A..20M and select 'bookmark this link' or equivalent in the popup menu


2019.11.21-23:36:43

© Université de Strasbourg/CNRS

    • Contact