2013A&A...555A.106P


Query : 2013A&A...555A.106P

2013A&A...555A.106P - Astronomy and Astrophysics, volume 555A, 106-106 (2013/7-1)

Spokes cluster: the search for the quiescent gas.

PINEDA J.E. and TEIXEIRA P.S.

Abstract (from CDS):

Understanding the role of turbulent and thermal fragmentation is one of the most important current questions of star formation. To better understand the process of star and cluster formation, we need to study in detail the physical structure and properties of the parental molecular cloud. In particular, it is important to understand the fragmentation process itself; this may be regulated by thermal pressure, magnetic fields, and/or turbulence. The targeted region, the Spokes cluster, or NGC2264-D, is a rich protostellar cluster where previous N2H+(1-0) observations of its dense cores presented linewidths consistent with supersonic turbulence. However, the fragmentation of the most massive of these cores appears to have a scale length consistent with that of the thermal Jeans length, suggesting that turbulence was not dominant. These two results (derived from N2H+(1-0) observations and measurements of the spatial separations of the protostars) probe different density regimes. Our aim is to determine if there is subsonic or less-turbulent gas (than previously reported) in the Spokes cluster when probing higher densities, which would reconcile both previous observational results. To study denser gas it is necessary to carry out observations using transitions with a higher critical density to directly measure its kinematics. We present APEX N2H+(3-2) and N2D+(3-2) observations of the NGC2264-D region to measure the linewidths and the deuteration fraction of the higher density gas. The critical densities of the selected transitions are more than an order of magnitude higher than that of N2H+(1-0). We find that the N2H+(3-2) and N2D+(3-2) emission present significantly narrower linewidths than the emission from N2H+(1-0) for most cores. In two of the spectra, the nonthermal component is close (within 1-σ) to the sound speed. In addition, we find that the three spatially segregated cores for which no protostar had been confirmed show the highest levels of deuteration. These results show that the higher density gas, probed with N2H+ and N2D+(3-2), reveals more quiescent gas in the Spokes cluster than previously reported. More high-angular resolution interferometric observations using high-density tracers are needed to truly assess the kinematics and substructure within NGC2264-D.

Abstract Copyright:

Journal keyword(s): ISM: clouds - stars: formation - ISM: molecules - ISM: individual objects: NGC2264-D

Simbad objects: 18

goto Full paper

goto View the references in ADS

Number of rows : 18
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 NAME Perseus Cloud SFR 03 35.0 +31 13           ~ 1311 0
2 [PAB2006] D-MM11 mm 06 40 47.9 +09 34 42           ~ 3 0
3 [PAB2006] D-MM5 mm 06 40 49.4 +09 34 29           ~ 3 0
4 JCMTSE J064050.8+093513 MoC 06 40 51.2 +09 35 24           ~ 6 0
5 NGC 2264 OpC 06 40 52.1 +09 52 37           ~ 1761 0
6 JCMTSF J064058.1+093619 mm 06 40 57.9 +09 36 24           ~ 6 0
7 [PAB2006] D-MM4 mm 06 41 00.3 +09 35 26           ~ 4 0
8 [TLY2006] 5 mm 06 41 02.9 +09 34 31           ~ 5 0
9 BGPSv2 G203.223+02.076 MoC 06 41 04.2 +09 35 01           ~ 8 0
10 [TLY2006] 2 mm 06 41 04.6 +09 36 19           ~ 8 0
11 JCMTSE J064105.8+093407 smm 06 41 05.8 +09 34 09           ~ 18 0
12 JCMTSE J064106.2+093555 smm 06 41 06.3 +09 35 56           ~ 6 0
13 [TLY2006] 10 mm 06 41 07.0 +09 33 31           ~ 5 0
14 [TLY2006] 15 mm 06 41 07.7 +09 34 18           ~ 6 0
15 [TLY2006] 11 mm 06 41 08.5 +09 35 43           ~ 6 0
16 NAME Mon OB1 D PoC 06 41 09.9 +09 34 34           ~ 58 1
17 JCMTSE J064111.5+093531 smm 06 41 11.6 +09 35 32           ~ 5 0
18 NAME rho Oph B2 Cloud PoC 16 27 27.9 -24 26 29           ~ 82 1

To bookmark this query, right click on this link: simbad:objects in 2013A&A...555A.106P and select 'bookmark this link' or equivalent in the popup menu


2023.09.28-17:20:40

© Université de Strasbourg/CNRS

    • Contact