Query : 2013A&A...557A..26M

2013A&A...557A..26M - Astronomy and Astrophysics, volume 557A, 26-26 (2013/9-1)

The STAGGER-grid: a grid of 3D stellar atmosphere models. I. Methods and general properties.


Abstract (from CDS):

We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted <3D> models). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ∼220 grid models range in effective temperature, Teff, from 4000 to 7000K in steps of 500K, in surface gravity, logg, from 1.5 to 5.0 in steps of 0.5dex, and metallicity, [Fe/H], from -4.0 to +0.5 in steps of 0.5 and 1.0dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the <3D> models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad range of stellar parameters the uncertainties of 1D models arising from the simplified treatment of physics, in particular convective energy transport. In agreement with previous findings, we find that the differences can be rather significant, especially for metal-poor stars.

Abstract Copyright:

Journal keyword(s): convection - hydrodynamics - radiative transfer - stars: abundances - stars: atmospheres - stars: fundamental parameters

VizieR on-line data: <Available at CDS (J/A+A/557/A26): tablec1.dat>

Simbad objects: 5

goto Full paper

goto View the references in ADS

Number of rows : 5
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
1 HD 84937 Pe* 09 48 56.0992891997 +13 44 39.326709913 8.49 8.68 8.32 7.97 7.70 F8Vm-5 767 0
2 HE 1327-2326 Pe* 13 30 05.9394958608 -23 41 49.699340844 13.761 14.01 13.55 13.50 12.803 CEMP-no 232 0
3 Wolf 1492 Pe* 13 40 02.4921849768 -00 02 18.750053436 11.601 11.832 11.451 11.184 10.892 sdF0: 274 0
4 HD 122563 Pe* 14 02 31.8455084952 +09 41 09.944391876 7.47 7.10 6.19 5.37 4.79 G8:III:Fe-5 811 0
5 HD 140283 Pe* 15 43 03.0971190219 -10 56 00.595693188 7.508 7.711 7.212 6.63 8.21 F9VkA5mA1 905 0

To bookmark this query, right click on this link: simbad:objects in 2013A&A...557A..26M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact