2013A&A...560A...7V


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.09CEST07:36:24

2013A&A...560A...7V - Astronomy and Astrophysics, volume 560A, 7-7 (2013/12-1)

A Herschel study of NGC 650.

VAN HOOF P.A.M., VAN DE STEENE G.C., EXTER K.M., BARLOW M.J., UETA T., GROENEWEGEN M.A.T., GEAR W.K., GOMEZ H.L., HARGRAVE P.C., IVISON R.J., LEEKS S.J., LIM T.L., OLOFSSON G., POLEHAMPTON E.T., SWINYARD B.M., VAN WINCKEL H., WAELKENS C. and WESSON R.

Abstract (from CDS):

As part of the Herschel guaranteed time key project Mass loss of Evolved StarS (MESS) we have imaged a sample of planetary nebulae. In this paper we present the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) images of the classical bipolar planetary nebula NGC 650. We used these images to derive a temperature map of the dust. We also constructed a photoionization and dust radiative transfer model using the spectral synthesis code Cloudy. To constrain this model, we used the PACS and SPIRE fluxes and combined them with hitherto unpublished International Ultraviolet Explorer (IUE) and Spitzer InfraRed Spectrograph (IRS) spectra as well as various other data from the literature. A temperature map combined with a photoionization model were used to study various aspects of the central star, the nebula, and in particular the dust grains in the nebula. The central star parameters are determined to be Teff=208kK and L=261L assuming a distance of 1200 pc. The stellar temperature is much higher than previously published values. We confirm that the nebula is carbon-rich with a C/O ratio of 2.1. The nebular abundances are typical for a type IIa planetary nebula. With the photoionization model we determined that the grains in the ionized nebula are large (assuming single-sized grains, they would have a radius of 0.15µm). Most likely these large grains were inherited from the asymptotic giant branch phase. The PACS 70/160µm temperature map shows evidence of two radiation components heating the grains. The first component is direct emission from the central star, while the second component is diffuse emission from the ionized gas (mainly Lyα). We show that previous suggestions of a photo-dissociation region surrounding the ionized region are incorrect. The neutral material resides in dense clumps inside the ionized region. These may also harbor stochastically heated very small grains in addition to the large grains.

Abstract Copyright:

Journal keyword(s): planetary nebulae: individual: NGC 650 - circumstellar matter - dust, extinction - infrared: ISM - ISM: molecules

Simbad objects: 9

goto Full paper

goto View the reference in ADS

Number of rows : 9

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 M 76 PN 01 42 19.6604707683 +51 34 31.553132974     17.48   17.69 DOZ 356 2
2 HD 44179 pA* 06 19 58.2185496 -10 38 14.706068 9.51 9.33 9.02     B9Ib/II 715 0
3 V* GW Vir WD* 12 01 45.9728868858 -03 45 40.627851273   14.87 15.04     DOQZ1 462 0
4 NGC 6445 PN 17 49 15.21 -20 00 34.5   18.9       ~ 284 0
5 M 57 PN 18 53 35.0969571234 +33 01 44.883146221   15.405 15.769 15.901 16.062 DA(O?) 790 2
6 NGC 6781 PN 19 18 28.085 +06 32 19.29     11.8     ~ 248 0
7 Min 1-92 pA* 19 36 18.9292148675 +29 32 49.838032394 12.13 12.35 11.75 11.54   B0.5IV[e] 236 1
8 NGC 7027 PN 21 07 01.8 +42 14 10   9.1 10.9     ~ 2322 1
9 NGC 7293 PN 22 29 38.5453078023 -20 50 13.746093105 11.894 13.158 13.524 13.689 13.898 DAO.5 896 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2013A&A...560A...7V and select 'bookmark this link' or equivalent in the popup menu


2020.07.09-07:36:24

© Université de Strasbourg/CNRS

    • Contact