2014A&A...563A..78M


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.03CEST22:18:17

2014A&A...563A..78M - Astronomy and Astrophysics, volume 563A, 78-78 (2014/3-1)

Polycyclic aromatic hydrocarbon ionization as a tracer of gas flows through protoplanetary disk gaps.

MAASKANT K.M., MIN M., WATERS L.B.F.M. and TIELENS A.G.G.M.

Abstract (from CDS):

Planet-forming disks of gas and dust around young stars contain polycyclic aromatic hydrocarbons (PAHs). We aim to characterize how the charge state of PAHs can be used as a probe of flows of gas through protoplanetary gaps. In this context, our goal is to understand the PAH spectra of four transitional disks. In addition, we want to explain the observed correlation between PAH ionization (traced by the I6.2/I11.3 feature ratio) and the disk mass (traced by the 1.3mm luminosity). We implement a model to calculate the charge state of PAHs in the Monte Carlo radiative transfer code MCMax. The emission spectra and ionization balance are calculated in the parameter space set by the properties of the star and the disk. A benchmark modeling grid is presented that shows how PAH ionization and luminosity behave as a function of star and disk properties. The PAH ionization is most sensitive to ultraviolet (UV) radiation and the electron density. In optically thick disks, where the UV field is low and the electron density is high, PAHs are predominantly neutral. Ionized PAHs trace low-density optically thin disk regions where the UV field is high and the electron density is low. Such regions are characteristic of gas flows through the gaps of transitional disks. We demonstrate that fitting the PAH spectra of four transitional disks requires a contribution of ionized PAHs in ``gas flows'' through the gap. The PAH spectra of transitional disks can be understood as superpositions of neutral and ionized PAHs. For HD97048, neutral PAHs in the optically thick disk dominate the spectrum. In the cases of HD169142, HD135344B and Oph IRS 48, small amounts of ionized PAHs located in the ``gas flows'' through the gap are strong contributors to the total PAH luminosity. The observed trend in the sample of Herbig stars between the disk mass and PAH ionization may imply that lower-mass disks have larger gaps. Ionized PAHs in gas flows through these gaps contribute strongly to their spectra.

Abstract Copyright:

Journal keyword(s): astrochemistry - protoplanetary disks - planet-disk interactions - stars: variables: T Tauri, Herbig Ae/Be

Simbad objects: 48

goto Full paper

goto View the reference in ADS

Number of rows : 48

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 V* AB Aur Ae* 04 55 45.8459978418 +30 33 04.293281305 7.20 7.16 7.05 6.96 6.70 A0Ve 930 2
2 HD 31648 Ae* 04 58 46.2654165113 +29 50 36.990341242 7.84 7.78 7.62 7.76 7.43 A5Vep 394 0
3 V* V1366 Ori Ae* 05 16 00.4764811920 -09 48 35.394685295 10.19 10.16 9.84 9.77 9.63 B9.5V 164 0
4 HD 35187 Y*O 05 24 01.17261 +24 57 37.5791   8.79 8.71 8.72   A2e+A7 95 0
5 HD 35929 dS* 05 27 42.7907337821 -08 19 38.446457813   8.55 8.11     F2IV/V 86 0
6 HD 36112 Ae* 05 30 27.5286772598 +25 19 57.082162439   8.57 8.27     A8Ve 358 0
7 HD 244604 Or* 05 31 57.2512002483 +11 17 41.374206174   9.61 9.43     A0Vesh 58 0
8 HD 37258 Ae* 05 36 59.2489032761 -06 09 16.317559872   9.72 9.61 9.56   A3Ve 114 0
9 V* BF Ori Ae* 05 37 13.2623698298 -06 35 00.565420577 10.37 10.00 9.69 10.06 9.31 A7III 270 0
10 HD 37357 Ae* 05 37 47.0795535305 -06 42 30.203876953   8.96 8.85     A1V 96 0
11 HD 37411 Or* 05 38 14.5075249942 -05 25 13.317577897 10.03 9.91 9.79 9.60 9.45 hA3VakA0mA0(eb)_lB 82 0
12 V* RR Tau Ae* 05 39 30.5114685049 +26 22 26.961204895 11.64 12.09 11.28 10.58 10.17 A0:IVe 216 0
13 HD 37806 Be* 05 41 02.2930276072 -02 43 00.729083804 7.67 7.93 7.90     B9/9.5II/III 138 0
14 HD 38120 Be* 05 43 11.8931815256 -04 59 49.881886291 9.08 9.10 9.1     B9Vnne 74 0
15 HD 250550 Ae* 06 01 59.9894900068 +16 30 56.724889160   9.60 9.593 9.64   B9e 232 1
16 HD 259431 Ae* 06 33 05.1905483916 +10 19 19.987469692 8.39 8.95 8.72     B6ep 261 1
17 HD 50138 Ae* 06 51 33.3989891154 -06 57 59.445949919 6.28 6.68 6.67     A1Ib/II 198 0
18 CD-44 3318 Ae* 07 19 28.2886716751 -44 35 11.235575735   10.47 9.99     A1e/F2IIIe 114 0
19 HD 58647 Em* 07 25 56.0988044433 -14 10 43.548997982 6.81 6.92 6.85 6.73 6.73 B9IV 73 0
20 HD 72106 ** 08 29 34.89852 -38 36 21.1321       9.32   A0IV 61 0
21 HD 85567 Be* 09 50 28.5375203189 -60 58 02.950579275 8.16 8.67 8.57     B5Vne 77 0
22 HD 95881 Em* 11 01 57.6212785173 -71 30 48.313329972   8.37 8.23     A0 88 0
23 HD 97048 Ae* 11 08 03.3105687971 -77 39 17.491180130 9.03 8.76 9.00   8.64 A0Vep 458 0
24 HD 98922 Be* 11 22 31.6740564115 -53 22 11.456030308   6.80 6.76     B9Ve 114 1
25 HD 100453 Ae* 11 33 05.5765928993 -54 19 28.543792679   8.09 7.79     A9Ve 196 1
26 HD 100546 Be* 11 33 25.4404858122 -70 11 41.239343121   6.71 6.30   6.64 A0VaekB8_lB 651 1
27 HD 101412 Be* 11 39 44.4562795603 -60 10 27.717502041   9.465 9.288     A3VaekA0mA0_lB 115 0
28 V* DX Cha Ae* 12 00 05.0870448691 -78 11 34.559255151   6.81 6.60     A0_sh 306 0
29 CPD-36 6759 Y*O 15 15 48.4459023859 -37 09 16.026315179   9.21 8.708     F8V 357 1
30 HD 139614 pr* 15 40 46.3818973118 -42 29 53.538928508   8.47 8.24     A9VekA5mA5(_lB) 160 0
31 HD 141569 pr* 15 49 57.7484743862 -03 55 16.344023102 7.22 7.20 7.12 7.00 7.04 A2VekB9mB9(_lB) 470 0
32 HD 142666 TT* 15 56 40.0222941557 -22 01 40.004849949 9.41 9.37 8.82 8.31 8.01 F0V_sh 217 0
33 HD 142527 Ae* 15 56 41.8888096574 -42 19 23.245384377   9.04 8.34     F6III 467 1
34 HD 144432 Ae* 16 06 57.9530266912 -27 43 09.758016578 8.47 8.53 8.19 7.82 7.53 A9/F0V 211 1
35 V* V856 Sco Ae* 16 08 34.2868591379 -39 06 18.326059778 7.66 7.41 7.05 6.92   A7IIIne_sh 351 0
36 HD 145263 * 16 10 55.1055882785 -25 31 21.668325032   9.39 8.98     F2V 59 0
37 WRAY 15-1484 Em* 16 27 15.1095981539 -48 39 26.849684049   14.6 13.7     B[e] 52 0
38 IRAS 16245-2423 TT* 16 27 37.1911764648 -24 30 35.031583716       16.66 14.67 B5-F2 235 0
39 HD 150193 Be* 16 40 17.9242900066 -23 53 45.192676418 9.69 9.32 8.79 8.41   B9.5Ve 290 0
40 EM* AS 220 Ae* 17 10 08.1238 -27 15 18.801 12.86 12.79 12.22 12.03 10.82 A6Ve+G5Ve 129 0
41 HD 163296 Ae* 17 56 21.2882188601 -21 57 21.872343282 7.00 6.93 6.85 6.86 6.67 A1Vep 802 0
42 HD 169142 Ae* 18 24 29.7799676975 -29 46 49.328597698   8.42 8.16     F1VekA3mA3_lB? 335 2
43 V* VV Ser Ae* 18 28 47.8619658319 +00 08 39.924642619 12.99 12.63 11.80 11.01 10.24 A5Ve 228 0
44 V* T CrA Ae* 19 01 58.7901571143 -36 57 50.329832417     11.67     F0 155 0
45 HD 179218 Ae* 19 11 11.2540715594 +15 47 15.632212730 7.55 7.476 7.39 7.25 7.21 A0Ve 220 0
46 V* WW Vul Ae* 19 25 58.7494596284 +21 12 31.333220807 11.46 10.99 10.25 10.38 10.12 A2IVe 214 0
47 HD 190073 Ae* 20 03 02.5098091524 +05 44 16.658081203 7.91 7.86 7.73   7.65 A2IVe 227 0
48 HD 203024 Y*O 21 16 03.0494926186 +68 54 52.100583837   9.02 8.86     A 45 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2014A&A...563A..78M and select 'bookmark this link' or equivalent in the popup menu


2020.07.03-22:18:17

© Université de Strasbourg/CNRS

    • Contact