C.D.S. - SIMBAD4 rel 1.7 - 2021.01.23CET00:51:57

2014A&A...566A.114G - Astronomy and Astrophysics, volume 566A, 114-114 (2014/6-1)

Disc-protoplanet interaction. Influence of circumprimary radiative discs on self-gravitating protoplanetary bodies in binary star systems.


Abstract (from CDS):

More than 60 planets have been discovered so far in systems that harbour two stars, some of which have binary semi-major axes as small as 20AU. It is well known that the formation of planets in such systems is strongly influenced by the stellar components, since the protoplanetary disc and the particles within are exposed to the gravitational influence of the binary. However, the question on how self-gravitating protoplanetary bodies affect the evolution of a radiative, circumprimary disc is still open. We present our 2D hydrodynamical GPU-CPU code and study the interaction of several thousands of self-gravitating particles with a viscous and radiative circumprimary disc within a binary star system. To our knowledge this program is the only one at the moment that is capable to handle this many particles and to calculate their influence on each other and on the disc. We performed hydrodynamical simulations of a circumstellar disc assuming the binary system to be coplanar. Our grid-based staggered mesh code relies on ideas from ZEUS-2D, where we implemented the FARGO algorithm and an additional energy equation for the radiative cooling according to opacity tables. To treat particle motion we used a parallelised version of the precise Bulirsch - Stoer algorithm. Four models in total where computed taking into account (i) only N-body interaction; (ii) N-body and disc interaction; (iii) the influence of computational parameters (especially smoothing) on N-body interaction; and (iv) the influence of a quiet low-eccentricity disc while running model (ii). The impact velocities were measured at two different time intervals and were compared. We show that the combination of disc- and N-body self-gravity can have a significant influence on the orbit evolution of roughly Moon sized protoplanets. Not only gas drag can alter the orbit of particles, but the gravitational influence of the disc can accomplish this as well. The results depend strongly on the state of the disc (i.e. quiet or dynamically evolving) - according to encounter-probability distributions, planet formation can be strongly altered if there is a dynamically evolving gas disc - and also on the smoothing parameter.

Abstract Copyright:

Journal keyword(s): accretion, accretion disks - hydrodynamics - protoplanetary disks - binaries: close

Simbad objects: 5

goto Full paper

goto View the reference in ADS

Number of rows : 5

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 HD 13445 PM* 02 10 25.9190575041 -50 49 25.467227759   6.945 6.117     K1.5V 421 1
2 HD 41004 ** 05 59 49.6473573887 -48 14 22.805780232   9.49 8.65     K1IV 156 1
3 * alf Cen B PM* 14 39 35.06311 -60 50 15.0992 2.89 2.21 1.33     K1V 912 1
4 HD 196885 PM* 20 39 51.8753142885 +11 14 58.702911143   6.92 6.385 6.32   F8V 165 1
5 * gam Cep SB* 23 39 20.9015326708 +77 37 56.505477975 5.190 4.250   2.6   K1III-IVCN1 555 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2014A&A...566A.114G and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact