2014A&A...566A.146K


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.03CEST23:06:46

2014A&A...566A.146K - Astronomy and Astrophysics, volume 566A, 146-146 (2014/6-1)

Explosion and nucleosynthesis of low-redshift pair-instability supernovae.

KOZYREVA A., YOON S.-C. and LANGER N.

Abstract (from CDS):

Both recent observations and stellar evolution models suggest that pair-instability supernovae (PISNe) could occur in the local Universe, at metallicities below ≲Z/3. Previous PISN models were mostly produced at very low metallicities in the context of the early Universe. We present new PISNe models at a metallicity of Z=0.001, which are relevant for the local Universe. We took previously published self-consistent stellar evolutionary models of pair-instability progenitors with initial masses of 150M and 250M at metallicity of Z=0.001 and followed the evolution of these models through the supernova explosions, using a hydrodynamics stellar evolution code with an extensive nuclear network including 200 isotopes. In both models the stars explode as PISNe without leaving a compact stellar remnant. Our models produce a nucleosynthetic pattern that is generally similar to that of Population III PISN models, which is mainly characterized by the production of large amounts of α-elements and a strong deficiency of the odd-charged elements. However, the odd-even effect in our models is significantly weaker than that found in Population III models. The comparison with the nucleosynthetic yields from core-collapse supernovae at a similar metallicity (Z=0.002) indicates that PISNe could have strongly influenced the chemical evolution below Z≃0.002, assuming a standard initial mass function. The odd-even effect is predicted to be most prominent for the intermediate-mass elements between silicon and calcium. With future observations of chemical abundances in Population II stars, our result can be used to constrain the number of PISNe that occurred during the past evolution of our Galaxy.

Abstract Copyright:

Journal keyword(s): nuclear reactions, nucleosynthesis, abundances - stars: evolution - stars: massive - supernovae: general - stars: abundances

VizieR on-line data: <Available at CDS (J/A+A/566/A146): table3.dat>

Simbad objects: 3

goto Full paper

goto View the reference in ADS

Number of rows : 3

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 SN 2006gy SN* 03 17 27.06 +41 24 19.5       14.20   SNIIn 285 1
2 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 14826 1
3 SN 2007bi SN* 13 19 20.19 +08 55 44.3       18.3   SNIcpec 182 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2014A&A...566A.146K and select 'bookmark this link' or equivalent in the popup menu


2020.07.03-23:06:46

© Université de Strasbourg/CNRS

    • Contact