2014A&A...568A..27F


C.D.S. - SIMBAD4 rel 1.7 - 2019.10.23CEST21:28:55

2014A&A...568A..27F - Astronomy and Astrophysics, volume 568A, 27-27 (2014/8-1)

Some like it cold: molecular emission and effective dust temperatures of dense cores in the Pipe Nebula.

FORBRICH J., OEBERG K., LADA C.J., LOMBARDI M., HACAR A., ALVES J. and RATHBORNE J.M.

Abstract (from CDS):

The Pipe Nebula is characterized by a low star-formation rate and is therefore an ideal environment to explore how initial conditions, including core characteristics, affect star-formation efficiencies. In a continued study of the molecular core population of the Pipe Nebula, we present a molecular-line survey of 52 cores. Previous research has shown a variety of different chemical evolutionary stages among the cores. Using the Mopra Radio Telescope, we observed the ground rotational transitions of HCO+, H13CO+, HCN, H13CN, HNC, and N2H+. These data are complemented with near-infrared extinction maps to constrain the column densities, effective dust temperatures derived from Herschel data, and NH3-based gas kinetic temperatures. The target cores are located across the nebula, span visual extinctions between 5 and 67mag, and effective dust temperatures (averaged along the lines of sight) between 13 and 19K. The extinction-normalized integrated line intensities, a proxy for the abundance in constant excitation conditions of optically thin lines, vary within an order of magnitude for a given molecule. The effective dust temperatures and gas kinetic temperatures are correlated, but the effective dust temperatures are consistently higher than the gas kinetic temperatures. Combining the molecular line and temperature data, we find that N2H+ is only detected toward the coldest and densest cores, while other lines show no correlation with these core properties. Within this large sample, N2H+ is the only species to exclusively trace the coldest and densest cores, in agreement with chemical considerations. In contrast, the common high-density tracers HCN and HNC are present in a majority of the cores, demonstrating the utility of these molecules for characterizing cores over a wide range of extinctions. The correlation between the effective dust temperatures and the gas kinetic temperatures suggests that the former are dominated by dust that is both dense and thermodynamically coupled to the dense gas traced by NH3. A direct use of the effective dust temperatures in a determination of dust column densities from dust emission measurements would, however, result in an underestimate of the dust column densities.

Abstract Copyright:

Journal keyword(s): stars: formation - dust, extinction - radio lines: ISM - submillimeter: ISM

Simbad objects: 5

goto Full paper

goto View the reference in ADS

Number of rows : 5

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2019
#notes
1 NAME Taurus Dark Cloud SFR 04 41.0 +25 52           ~ 3310 0
2 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 2930 0
3 LDN 1746 DNe 17 11.3 -27 22           ~ 104 0
4 NAME the Pipe Nebula DNe 17 30 -25.0           ~ 317 1
5 DCld 001.6+03.8 DNe 17 35 45 -25 33.2           ~ 47 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2014A&A...568A..27F and select 'bookmark this link' or equivalent in the popup menu


2019.10.23-21:28:55

© Université de Strasbourg/CNRS

    • Contact