2014A&A...570A..91M


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.13CEST06:46:59

2014A&A...570A..91M - Astronomy and Astrophysics, volume 570A, 91-91 (2014/10-1)

Planets transiting non-eclipsing binaries.

MARTIN D.V. and TRIAUD A.H.M.J.

Abstract (from CDS):

The majority of binary stars do not eclipse. Current searches for transiting circumbinary planets concentrate on eclipsing binaries, and are therefore restricted to a small fraction of potential hosts. We investigate the concept of finding planets transiting non-eclipsing binaries, whose geometry would require mutually inclined planes. Using an N-body code we explore how the number and sequence of transits vary as functions of observing time and orbital parameters. The concept is then generalised thanks to a suite of simulated circumbinary systems. Binaries are constructed from radial-velocity surveys of the solar neighbourhood. They are then populated with orbiting gas giants, drawn from a range of distributions. The binary population is shown to be compatible with the Kepler eclipsing binary catalogue, indicating that the properties of binaries may be as universal as the initial mass function. These synthetic systems produce transiting circumbinary planets occurring on both eclipsing and non-eclipsing binaries. Simulated planets transiting eclipsing binaries are compared with published Kepler detections. We find 1) that planets transiting non-eclipsing binaries are probably present in the Kepler data; 2) that observational biases alone cannot account for the observed over-density of circumbinary planets near the stability limit, which implies a physical pile-up; and 3) that the distributions of gas giants orbiting single and binary stars are likely different. Estimating the frequency of circumbinary planets is degenerate with the spread in mutual inclination. Only a minimum occurrence rate can be produced, which we find to be compatible with 9%. Searching for inclined circumbinary planets may significantly increase the population of known objects and will test our conclusions. Their presence, or absence, will reveal the true occurrence rate and help develop circumbinary planet formation theories.

Abstract Copyright:

Journal keyword(s): planets and satellites: detection - planets and satellites: formation - planets and satellites: gaseous planets - binaries: close - binaries: eclipsing - binaries: spectroscopic

Simbad objects: 20

goto Full paper

goto View the reference in ADS

Number of rows : 20

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 V* V582 Mon Or* 06 41 10.3403654169 +09 28 33.490089193   17.404   17.21 16.45 K5 165 0
2 * alf Cen ** 14 39 29.71993 -60 49 55.9990   0.4 -0.1     G2V+K1V 817 0
3 * alf Cen B PM* 14 39 35.06311 -60 50 15.0992 2.89 2.21 1.33     K1V 894 1
4 VSSG 26 Y*O 16 27 18.48720 -24 29 05.9136           ~ 83 0
5 YLW 16A Y*O 16 27 28.02744 -24 39 33.5052           K8 185 0
6 * b Her SB* 18 07 01.53971 +30 33 43.6896 5.52 5.59 5.07 4.61 4.28 F7VgF7mF5 417 0
7 Kepler-38 Al* 19 07 19.2813795966 +42 16 45.120332899           ~ 77 1
8 Kepler-38b Pl 19 07 19.2813795966 +42 16 45.120332899           ~ 46 1
9 Kepler-413 Al* 19 14 02.5618062386 +51 09 45.019125804           ~ 55 0
10 Kepler-16 Al* 19 16 18.1759181246 +51 45 26.777781114   12.1   11.90   K7V 194 1
11 Kepler-16b Pl 19 16 18.1759181246 +51 45 26.777781114           ~ 109 1
12 Kepler-35 Al* 19 37 59.2726236478 +46 41 22.952068619           ~ 108 1
13 Kepler-47c Pl 19 41 11.4984891255 +46 55 13.705101341           ~ 50 1
14 Kepler-47b Pl 19 41 11.4984891255 +46 55 13.705101341           ~ 56 1
15 Kepler-47 Al* 19 41 11.4984891255 +46 55 13.705101341           ~ 122 1
16 Kepler-47d Pl 19 41 11.4984891255 +46 55 13.705101341           ~ 15 0
17 Kepler-34b Pl 19 45 44.5975310719 +44 38 29.612454271           ~ 81 1
18 Kepler-34 Al* 19 45 44.5975310719 +44 38 29.612454271           ~ 125 1
19 Kepler-64 Al* 19 52 51.6169691968 +39 57 18.370395541           ~ 76 1
20 HD 202206c Pl 21 14 57.7684954746 -20 47 21.162361638           ~ 36 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2014A&A...570A..91M and select 'bookmark this link' or equivalent in the popup menu


2020.07.13-06:46:59

© Université de Strasbourg/CNRS

    • Contact