2015A&A...575A..60M


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.12CEST12:03:00

2015A&A...575A..60M - Astronomy and Astrophysics, volume 575A, 60-60 (2015/3-1)

Impact of mass-loss on the evolution and pre-supernova properties of red supergiants.

MEYNET G., CHOMIENNE V., EKSTROEM S., GEORGY C., GRANADA A., GROH J., MAEDER A., EGGENBERGER P., LEVESQUE E. and MASSEY P.

Abstract (from CDS):

The post-main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate, and the effect of a close companion. We study the change in the red supergiant (RSG) lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor and the structure of the stars at that time for various mass-loss rates during the RSG phase and for two different initial rotation velocities. Stellar models were computed with the Geneva code for initial masses between 9 and 25M at solar metallicity (Z=0.014) with 10 times and 25 times the standard mass-loss rates during the RSG phase, with and without rotation. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and in turn on the luminosity function of RSGs. An observed RSG is associated with a model of higher initial mass when models with an enhanced RSG mass-loss rate are used to deduce that mass. At solar metallicity, models with an enhanced mass-loss rate produce significant changes in the populations of blue, yellow, and RSGs. When extended blue loops or blueward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post-RSG objects. These post-RSG stars are predicted to show much lower surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. Enhanced mass-loss rates during the RSG phase have little impact on the Wolf-Rayet populations. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever at the pre-supernova stage the H-rich envelope contains more than about 5% of the initial mass, the star is a RSG, and whenever the H-rich envelope contains less than 1% of the total mass, the star is a blue supergiant. For intermediate situations, intermediate colors and effective temperatures are obtained. Yellow progenitors for core-collapse supernovae can be explained by models with an enhanced mass-loss rate, while the red progenitors are better fitted by models with the standard mass-loss rate.

Abstract Copyright:

Journal keyword(s): supergiants - stars: Wolf-Rayet - stars: mass-loss - stars: rotation

Simbad objects: 28

goto Full paper

goto View the reference in ADS

Number of rows : 28

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 M 31 G 00 42 44.330 +41 16 07.50 4.86 4.36 3.44     ~ 10905 1
2 NGC 457 OpC 01 19 35 +58 17.2   6.97 6.4     ~ 216 2
3 M 103 OpC 01 33 23 +60 39.0   7.72 7.4     ~ 184 0
4 M 33 GiG 01 33 50.904 +30 39 35.79 6.17 6.27 5.72     ~ 5135 1
5 NGC 884 OpC 02 22 23 +57 07.5           ~ 445 0
6 NAME Magellanic Clouds GrG 03 00 -71.0           ~ 5669 1
7 SN 1999em SN* 04 41 27.04 -02 51 45.2   13.79 13.7     SNIIP 573 1
8 SN 2009kr SN* 05 12 03.30 -15 41 52.2           SNII 67 1
9 M 42 HII 05 35 17.3 -05 23 28           ~ 3724 0
10 * alf Ori s*r 05 55 10.30536 +07 24 25.4304 4.38 2.27 0.42 -1.17 -2.45 M1-M2Ia-Iab 1466 0
11 V* VY CMa s*r 07 22 58.32877 -25 46 03.2355 12.01 10.19 7.95     M5Iae 996 0
12 NGC 2439 OpC 07 40 45 -31 41.6   7.31 6.9     ~ 129 0
13 SN 1993J SN* 09 55 24.77476 +69 01 13.7026   10.8 12.0     SNIIb 1253 1
14 SN 2009hd SN* 11 20 16.99 +12 58 46.3           SNII 47 1
15 SN 2013df SN* 12 26 29.33 +31 13 38.3           SNIIb 60 1
16 SN 2008cn SN* 12 40 55.66 -40 58 12.1           SNII 31 1
17 NGC 4755 OpC 12 53 39 -60 21.7           ~ 268 0
18 SN 2011dh SN* 13 30 05.10555 +47 10 10.9227           SNIIb 280 1
19 M 101 GiP 14 03 12.583 +54 20 55.50   8.46 7.86 7.76   ~ 2546 2
20 * alf Sco ** 16 29 24.45970 -26 25 55.2094 4.08 2.75 0.91 -0.64 -1.87 M0.5Iab+B3V: 696 0
21 Cl Westerlund 1 OpC 16 47 04.00 -45 51 04.9           ~ 464 0
22 NGC 6231 OpC 16 54 08.51 -41 49 36.0   2.83 2.6     ~ 485 0
23 GCIRS 7 * 17 45 39.987 -29 00 22.24           M2 344 0
24 NAME Gal Center reg 17 45 40.04 -29 00 28.1           ~ 11542 0
25 IRC -10414 s*r 18 23 17.9089752940 -13 42 47.110208529       11.15   M7I 70 0
26 Cl Stephenson 2 OpC 18 39 20 -06 01.7           ~ 82 0
27 SN 2004et SN* 20 35 25.33 +60 07 17.7   12.88       SNIIP 403 1
28 * mu. Cep s*r 21 43 30.4610574 +58 46 48.160181 8.85 6.43 4.08 1.98 0.22 M2-Ia 621 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2015A&A...575A..60M and select 'bookmark this link' or equivalent in the popup menu


2020.07.12-12:03:00

© Université de Strasbourg/CNRS

    • Contact