2015A&A...575A..90G


Query : 2015A&A...575A..90G

2015A&A...575A..90G - Astronomy and Astrophysics, volume 575A, 90-90 (2015/3-1)

LOFAR sparse image reconstruction.

GARSDEN H., GIRARD J.N., STARCK J.L., CORBEL S., TASSE C., WOISELLE A., McKEAN J.P., VAN AMESFOORT A.S., ANDERSON J., AVRUCH I.M., BECK R., BENTUM M.J., BEST P., BREITLING F., BRODERICK J., BRUEGGEN M., BUTCHER H.R., CIARDI B., DE GASPERIN F., DE GEUS E., DE VOS M., DUSCHA S., EISLOEFFEL J., ENGELS D., FALCKE H., FALLOWS R.A., FENDER R., FERRARI C., FRIESWIJK W., GARRETT M.A., GRIESSMEIER J., GUNST A.W., HASSALL T.E., HEALD G., HOEFT M., HOERANDEL J., VAN DER HORST A., JUETTE E., KARASTERGIOU A., KONDRATIEV V.I., KRAMER M., KUNIYOSHI M., KUPER G., MANN G., MARKOFF S., McFADDEN R., McKAY-BUKOWSKI D., MULCAHY D.D., MUNK H., NORDEN M.J., ORRU E., PAAS H., PANDEY-POMMIER M., PANDEY V.N., PIETKA G., PIZZO R., POLATIDIS A.G., RENTING A., ROETTGERING H., ROWLINSON A., SCHWARZ D., SLUMAN J., SMIRNOV O., STAPPERS B.W., STEINMETZ M., STEWART A., SWINBANK J., TAGGER M., TANG Y., TASSE C., THOUDAM S., TORIBIO C., VERMEULEN R., VOCKS C., VAN WEEREN R.J., WIJNHOLDS S.J., WISE M.W., WUCKNITZ O., YATAWATTA S., ZARKA P. and ZENSUS A.

Abstract (from CDS):

The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the ``compressed sensing'' (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.

Abstract Copyright:

Journal keyword(s): techniques: interferometric - methods: numerical - techniques: image processing

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 M 87 AGN 12 30 49.42338414 +12 23 28.0436859 10.16 9.59 8.63   7.49 ~ 7066 3
2 SS 433 HXB 19 11 49.5647697480 +04 58 57.827127648   16.3 13.0     A7Ib: 2096 4
3 SNR G039.7-02.0 SNR 19 12 20 +04 55.0           ~ 347 1
4 NAME Cyg A Sy2 19 59 28.35656837 +40 44 02.0972325   16.22 15.10     ~ 2338 2

To bookmark this query, right click on this link: simbad:objects in 2015A&A...575A..90G and select 'bookmark this link' or equivalent in the popup menu


2023.11.28-10:48:24

© Université de Strasbourg/CNRS

    • Contact