C.D.S. - SIMBAD4 rel 1.7 - 2020.07.06CEST23:00:46

2015A&A...576A..84G - Astronomy and Astrophysics, volume 576A, 84-84 (2015/4-1)

Probing the accretion-ejection connection with VLTI/AMBER. High spectral resolution observations of the Herbig Ae star HD 163296.


Abstract (from CDS):

Accretion and ejection are tightly connected and represent the fundamental mechanisms regulating star formation. However, the exact physical processes involved are not yet fully understood. We present high angular and spectral resolution observations of the Brγ emitting region in the Herbig Ae star HD163296 (MWC275) in order to probe the origin of this line and constrain the physical processes taking place at sub-AU scales in the circumstellar region. By means of VLTI-AMBER observations at high spectral resolution (R∼12000), we studied interferometric visibilities, wavelength-differential phases, and closure phases across the Brγ line of HD163296. To constrain the physical origin of the Brγ line in Herbig Ae stars, all the interferometric observables were compared with the predictions of a line radiative transfer disc wind model. The measured visibilities clearly increase within the Brγ line, indicating that the Brγ emitting region is more compact than the continuum. By fitting a geometric Gaussian model to the continuum-corrected Brγ visibilities, we derived a compact radius of the Brγ emitting region of ∼0.07±0.02AU (Gaussian half width at half maximum; or a ring-fit radius of ∼0.08±0.02AU). To interpret the observations, we developed a magneto-centrifugally driven disc wind model. Our best disc wind model is able to reproduce, within the errors, all the interferometric observables and it predicts a launching region with an outer radius of ∼0.04AU. However, the intensity distribution of the entire disc wind emitting region extends up to ∼0.16AU. Our observations, along with a detailed modelling of the Brγ emitting region, suggest that most of the Brγ emission in HD163296 originates from a disc wind with a launching region that is over five times more compact than previous estimates of the continuum dust rim radius.

Abstract Copyright:

Journal keyword(s): stars: formation - circumstellar matter - ISM: individual objects: HD 163296 (MWC 275) - infrared: ISM - techniques: interferometric - ISM: jets and outflows

Simbad objects: 5

goto Full paper

goto View the reference in ADS

Number of rows : 5

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 * 58 Oph PM* 17 43 25.7937012 -21 40 59.497954   5.313 4.861     F5V 129 0
2 HD 162255 PM* 17 51 07.7382696539 -22 55 15.607250079   7.79 7.15     G3V 37 0
3 HD 163296 Ae* 17 56 21.2882188601 -21 57 21.872343282 7.00 6.93 6.85 6.86 6.67 A1Vep 802 0
4 * 4 Sgr PM* 17 59 47.5513229478 -23 48 58.026944408   4.698 4.724     A0 84 0
5 EM* MWC 297 Ae* 18 27 39.5266257570 -03 49 52.136526892 15.57 14.34 12.31 11.34   B1.5Ve 266 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2015A&A...576A..84G and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact