2015A&A...576A.108G


Query : 2015A&A...576A.108G

2015A&A...576A.108G - Astronomy and Astrophysics, volume 576A, 108-108 (2015/4-1)

An XMM-Newton view of FeKα in high-mass X-ray binaries.

GIMENEZ-GARCIA A., TORREJON J.M., EIKMANN W., MARTINEZ-NUNEZ S., OSKINOVA L.M., RODES-ROCA J.J. and BERNABEU G.

Abstract (from CDS):

We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeKα emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeKα in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeKα spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in γ Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeKα is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeKα (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeKα is narrow (σline<0.15keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V∼1000km/s). (6) The equivalent hydrogen column (NH) directly correlates to the EW of FeKα, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object - wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor's wind in the FeKα emission and the absorption when the donor is a supergiant massive star.

Abstract Copyright:

Journal keyword(s): surveys - X-rays: binaries - binaries: general - circumstellar matter - stars: winds, outflows - stars: early-type

Simbad objects: 52

goto Full paper

goto View the references in ADS

Number of rows : 52
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2022
#notes
1 BD+60 73 HXB 00 37 09.6358153296 +61 21 36.487888344 9.79 10.14 9.66     B1Ib 73 0
2 * gam Cas Be* 00 56 42.5317 +60 43 00.265 1.18 2.29 2.39 2.32 2.40 B0.5IVpe 1170 2
3 EM* GGA 104 HXB 01 47 00.2124077208 +61 21 23.663788056 11.76 12.09 11.366 11.00 10.52 B1IIIe 177 0
4 LS I +61 303 HXB 02 40 31.6644419688 +61 13 45.593918580 11.27 11.61 10.75 10.19 9.55 B0Ve 805 2
5 V* BQ Cam HXB 03 34 59.9116110096 +53 10 23.296879776   17.16 15.42 14.26 13.04 O8.5Ve 431 1
6 V* X Per HXB 03 55 23.0777456088 +31 02 45.039836148 6.090 6.840 6.720     O9.5III 940 0
7 V* CI Cam HXB 04 19 42.1355996520 +55 59 57.706599192 12.13 12.41 11.77 10.79 9.99 B0/2I[e] 236 0
8 LS V +44 17 HXB 04 40 59.3296237272 +44 31 49.258049376 11.02 11.42 10.73 10.28 9.76 B0.2Ve 106 0
9 MACHO 44.1741.17 HXB 04 51 06.80 -69 48 03.2     14.70     ~ 15 1
10 HD 245770 HXB 05 38 54.5748918624 +26 18 56.836952784 9.30 9.84 9.39 8.77 8.30 O9/B0III/Ve 927 0
11 HD 45314 Be* 06 27 15.7784072112 +14 53 21.212913660 5.91 6.79 6.64     O9:npe 165 0
12 V* GP Vel HXB 09 02 06.8608812864 -40 33 16.899168060 6.85 7.37 6.87 6.31 6.05 B0.5Ia 1430 0
13 GRO J1008-571 HXB 10 09 46.9642314696 -58 17 35.603851848       14.63   B0e 204 0
14 LS 1698 HXB 10 37 35.3145142200 -56 47 55.869594756   12.00 11.48 11.38   B0III/V:e 98 0
15 V* V779 Cen HXB 11 21 15.0920532528 -60 37 25.630264596   14.4 12.27     O9III/Veq 1032 0
16 HD 306414 s*b 11 21 46.8238550520 -59 51 47.970396396 10.12 10.69 10.23 10.00   B1Ia 143 0
17 V* BP Cru HXB 12 26 37.5605188992 -62 46 13.261044684   12.70 10.66     B1.5Iaeq 641 0
18 HD 110432 Be* 12 42 50.2663572384 -63 03 31.052981412 4.79 5.58 5.31     B0.5IVpe 284 0
19 HD 119682 Be* 13 46 32.5709610312 -62 55 24.156893676 7.26 7.978 7.901 8.72   B0Ve 60 0
20 V* QV Nor HXB 15 42 23.3633146128 -52 23 09.577395960   16.3 14.5     B0.2Ia:e 394 1
21 CXOU J162046.2-513006 HXB 16 20 46.2644580432 -51 30 06.045320232   18.9   16.28 13.4 B8IIIe 58 0
22 IGR J16318-4848 HXB 16 31 48.3090342864 -48 49 00.665054832           ~ 163 0
23 3FHL J1633.0-4746e HXB 16 32 01.87 -47 52 28.3           O8I 162 3
24 SWIFT J1633.8-4724B HXB 16 32 37.850 -47 23 41.45           O8Iafpe 34 0
25 2MASS J16415078-4532253 HXB 16 41 50.7984926736 -45 32 25.366995132           O8.5(sg?) 99 2
26 2MASS J16463526-4507045 HXB 16 46 35.2590465192 -45 07 04.609890912   15.2       O9.5Ia 89 1
27 2MASS J16480656-4512068 HXB 16 48 06.56 -45 12 06.8           O8.5Iab 126 2
28 NAME OAO 1657-41 HXB 17 00 48.884 -41 39 21.46           Ofpe/WN9 225 0
29 HD 153919 HXB 17 03 56.7725629224 -37 50 38.913331452 6.06 6.78 6.51 6.08 5.90 O6Iafcp 784 1
30 2MASS J17251139-3616575 HXB 17 25 11.392 -36 16 57.53     14.30     B0-1Ia 117 2
31 HD 157832 Be* 17 27 54.8113451976 -47 01 34.397043672 5.81 6.636 6.663     B2ne 59 1
32 AX J1739.1-3020 HXB 17 39 11.5515537336 -30 20 37.787917704     14.40 13.91   O8.5Iab(f) 148 1
33 SWIFT J1743.1-3620 HXB 17 43 01.33608 -36 22 22.1844       16.8   OI 42 0
34 HD 161103 Be* 17 44 45.7656635952 -27 13 44.478959340 8.44 9.23 9.13 9.12   B0.5III/IVe 77 0
35 2XMM J174906.8-273232 HXB 17 49 06.79 -27 32 32.4           B1-3 43 0
36 IGR J17544-2619 HXB 17 54 25.2722906112 -26 19 52.576928292   14.71 12.94 12.10 10.38 O9Ib 170 0
37 IGR J18029-2016 HXB 18 02 39.9 -20 17 13           B1b 75 1
38 V* V5512 Sgr LXB 18 14 31.55 -17 09 26.7     12.73     K5III 371 0
39 4FGL J1821.1-1422 HXB 18 20 29.5 -14 34 24           O9.5-B0Ve 56 1
40 V* V479 Sct HXB 18 26 15.0561548880 -14 50 54.247274304 12.02 12.23 11.27 11.04   ON6V((f))z 534 2
41 ATO J278.3657-10.5901 HXB 18 33 27.7668744360 -10 35 24.439580520     11.9     B0.5Ve 24 0
42 [KRL2007b] 332 HXB 18 41 00.43 -05 35 46.5           B1Ib 120 1
43 [KRL2007b] 335 HXB 18 45 01.5 -04 33 58   16.24 14.06 12.71 11.42 O9Ia 81 0
44 IGR J18483-0311 HXB 18 48 17.2064716656 -03 10 16.865225040 23.702 25.162 21.884 17.888 15.88 B0.5Ia 115 0
45 4U 1850-03 HXB 18 48 17.7 -02 25 13           Be? 103 1
46 4U 1907+09 HXB 19 09 37.1382681824 +09 49 55.279554289   19.41 16.35 14.40 12.53 O8.5Iab 323 1
47 HD 226868 HXB 19 58 21.6757355952 +35 12 05.784512688 9.38 9.72 8.91 8.42   O9.7Iabpvar 4122 0
48 NAME Cyg X Cld 20 28 41 +41 10.2           ~ 730 1
49 BD+47 3129 HXB 20 30 30.8452150680 +47 51 50.717123784 8.95 9.594 9.273 9.273   B0.5III/IVe 36 0
50 GSC 03588-00834 HXB 21 03 35.7100848936 +45 45 05.568751692   15.34 14.20 13.49 12.75 B0Ve 163 0
51 BD+53 2790 HXB 22 07 56.2366802328 +54 31 06.408879888 9.4 10.11 9.84 9.64 9.43 O9.5Vep 188 0
52 NAME Cas A SNR 23 23 24.000 +58 48 54.00     14.30     ~ 2621 1

To bookmark this query, right click on this link: simbad:objects in 2015A&A...576A.108G and select 'bookmark this link' or equivalent in the popup menu


2022.08.15-15:13:05

© Université de Strasbourg/CNRS

    • Contact