2015A&A...577A..65B


C.D.S. - SIMBAD4 rel 1.7 - 2021.02.24CET22:33:54

2015A&A...577A..65B - Astronomy and Astrophysics, volume 577A, 65-65 (2015/5-1)

Time evolution of snow regions and planet traps in an evolving protoplanetary disk.

BAILLIE K., CHARNOZ S. and PANTIN E.

Abstract (from CDS):

Planet traps and snow lines are structures that may promote planetary formation in protoplanetary disks. They are very sensitive to the disk density and temperature structure. It is therefore necessary to follow the time evolution of the disk thermal structure throughout its viscous spreading. Since the snowlines are thought to generate density and temperature bumps, it is important to take into account the disk opacity variations when the various dust elements are sublimated. We track the time evolution of planet traps and snowlines in a viscously evolving protoplanetary disk using an opacity table that accounts for the composition of the dust material. We coupled a dynamical and thermodynamical disk model with a temperature-dependent opacity table (that accounts for the sublimation of the main dust components) to investigate the formation and evolution of snowlines and planet traps during the first million years of disk evolution. Starting from a minimum mass solar nebula, we find that the disk mid-plane temperature profile shows several plateaux (0.1-1AU wide) at the different sublimation temperatures of the species that make up the dust. For water ice, the corresponding plateau can be larger than 1AU, which means that this is a snow ''region'' rather than a snow ''line''. As a consequence, the surface density of solids in the snow region may increase gradually, not abruptly. Several planet traps and desert regions appear naturally as a result of abrupt local changes in the temperature and density profiles over the disk lifetime. These structures are mostly located at the edges of the temperature plateaux (surrounding the dust sublimation lines) and at the heat-transition barrier where the disk stellar heating and viscous heating are of the same magnitude (around 10AU after 1Myr). Several traps are identified: although a few appear to be transient, most of them slowly migrate along with the heat-transition barrier or the dust sublimation lines. These planet traps may temporarily favor the growth of planetary cores.

Abstract Copyright:

Journal keyword(s): protoplanetary disks - planets and satellites: formation - planets and satellites: dynamical evolution and stability - accretion, accretion disks - hydrodynamics - planet-disk interactions

Simbad objects: 2

goto Full paper

goto View the reference in ADS

Number of rows : 2

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 NAME Taurus Complex SFR 04 41.0 +25 52           ~ 3637 0
2 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3129 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2015A&A...577A..65B and select 'bookmark this link' or equivalent in the popup menu


2021.02.24-22:33:54

© Université de Strasbourg/CNRS

    • Contact