Query : 2015A&A...578A.122M

2015A&A...578A.122M - Astronomy and Astrophysics, volume 578A, 122-122 (2015/6-1)

Eta Carinae's 2014.6 spectroscopic event: Clues to the long-term recovery from its Great Eruption.


Abstract (from CDS):

Every 5.5-years, η Car's light curve and spectrum change remarkably across all observed wavelength bands. These so-called spectroscopic events are most likely caused by the close approach of a companion. We compare the recent spectroscopic event in mid-2014 to the events in 2003 and 2009 and investigate long-term trends. Eta Car was observed with HST STIS, VLT UVES, and CTIO 1.5m CHIRON for a period of more than two years in 2012-2015. Archival observations with these instruments cover three orbital cycles and the events of 2003.5, 2009.1, and 2014.6. The STIS spectra provide high spatial resolution and include epochs during the 2014 event when observations from most ground-based observatories were not feasible. The strategy for UVES observations allows for a multidimensional analysis, because each location in the reflection nebula is correlated with a different stellar latitude. Important spectroscopic diagnostics during η Car's events show significant changes in 2014 compared to previous events. While the timing of the first HeII λ4686 flash was remarkably similar to previous events, the HeII equivalent widths were slightly larger, and the line flux increased by a factor of ∼7 compared to 2003. The second HeII peak occurred at about the same phase as in 2009, but was stronger. The HeI line flux grew by a factor of ∼8 in 2009-2014 compared to 1998-2003. The NII emission lines also increased in strength. On the other hand, Hα and FeII lines show the smallest emission strengths ever observed in η Car. The optical continuum brightened by a factor of ∼4 in the past 10-15 years. The polar spectrum shows fewer changes in the broad wind emission lines: the FeII emission strength decreased by a factor of ∼2 (compared to a factor of ∼4 in our direct line of sight). The HeII equivalent widths at FOS4 were larger in 2009 and 2014 than during the 2003 event. The basic character of η Car's spectroscopic events has changed in the past two to three cycles. The ionizing UV radiation dramatically weakened during each pre-2014 event but not in 2014. The strengthening of HeI and NII emission and the weakening of the lower-excitation Hα and FeII wind features in our direct line of sight implies a substantial change in the physical parameters of the emitting regions. The polar spectrum at FOS4 shows fewer changes in the broad wind emission lines, which may be explained by the latitude-dependent wind structure of η Car. The quick and strong recovery of the HeII emission in 2014 supports a scenario, in which the wind-wind shock may not have completely collapsed as was proposed for previous events. As a result, the companion did not accrete as much material as in previous events. All this may be the consequence of just one elementary change, namely a strong decrease in the primary's mass-loss rate. This would mark the beginning of a new phase, in which the spectroscopic events can be described as an occultation by the primary's wind.

Abstract Copyright:

Journal keyword(s): stars: massive - stars: variables: S Doradus - stars: individual: eta Carinae - stars: winds, outflows - stars: mass-loss

VizieR on-line data: <Available at CDS (J/A+A/578/A122): table1.dat table2.dat table3.dat>

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
1 * mu. Col V* 05 45 59.8950238944 -32 18 23.162261796 3.84 4.90 5.18 5.30 5.57 O9.5V 489 0
2 NAME Little Homunculus ISM 10 45 -59.7           ~ 69 2
3 NAME Homunculus Nebula ISM 10 45 03.5 -59 41 04           ~ 360 1
4 * eta Car Em* 10 45 03.5377808928 -59 41 04.051599720 6.37 7.03 6.48 4.90 4.41 LBV 2399 0

To bookmark this query, right click on this link: simbad:objects in 2015A&A...578A.122M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact