2015A&A...580A..35G


Query : 2015A&A...580A..35G

2015A&A...580A..35G - Astronomy and Astrophysics, volume 580A, 35-35 (2015/8-1)

High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614.

GARCIA-BURILLO S., COMBES F., USERO A., AALTO S., COLINA L., ALONSO-HERRERO A., HUNT L.K., ARRIBAS S., COSTAGLIOLA F., LABIANO A., NERI R., PEREIRA-SANTAELLA M., TACCONI L.J. and VAN DER WERF P.P.

Abstract (from CDS):

Galaxy evolution scenarios predict that the feedback of star formation and nuclear activity (AGN) can drive the transformation of gas-rich spiral mergers into (ultra) luminous infrared galaxies and, eventually, lead to the build-up of QSO/elliptical hosts. We study the role that star formation and AGN feedback have in launching and maintaining the molecular outflows in two starburst-dominated advanced mergers, NGC 1614 (DL=66Mpc) and IRAS 17208-0014 (DL=181Mpc), by analyzing the distribution and kinematics of their molecular gas reservoirs. Both galaxies present evidence of outflows in other phases of their ISM. We used the Plateau de Bure interferometer (PdBI) to image the CO(1-0) and CO(2-1) line emissions in NGC 1614 and IRAS 17208-0014, respectively, with high spatial resolution (0.5"-1.2"). The velocity fields of the gas were analyzed and modeled to find the evidence of molecular outflows in these sources and characterize the mass, momentum, and energy of these components. While most (≥95%) of the CO emission stems from spatially resolved (∼2-3kpc-diameter) rotating disks, we also detect in both mergers the emission from high-velocity line wings that extend up to ±500-700km/s, well beyond the estimated virial range associated with rotation and turbulence. The kinematic major axis of the line-wing emission is tilted by ∼90° in NGC 1614 and by ∼180° in IRAS 17208-0014 relative to the major axes of their respective rotating disks. These results can be explained by the existence of non-coplanar molecular outflows in both systems: the outflow axis is nearly perpendicular to the rotating disk in NGC 1614, but it is tilted relative to the angular momentum axis of the rotating disk in IRAS 17208-0014. In stark contrast to NGC 1614, where star formation alone can drive its molecular outflow, the mass, energy, and momentum budget requirements of the molecular outflow in IRAS 17208-0014 can be best accounted for by the existence of a so far undetected (hidden) AGN of LAGN∼7x1011L. The geometry of the molecular outflow in IRAS 17208-0014 suggests that the outflow is launched by a non-coplanar disk that may be associated with a buried AGN in the western nucleus.

Abstract Copyright:

Journal keyword(s): galaxies: individual: IRAS 17208-0014 - galaxies: ISM - galaxies: kinematics and dynamics - galaxies: starburst - galaxies: nuclei - galaxies: individual: NGC1614

Simbad objects: 9

goto Full paper

goto View the references in ADS

Number of rows : 9
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 NGC 253 SyG 00 47 33.134 -25 17 19.68   8.03   6.94 8.1 ~ 3194 2
2 M 77 GiP 02 42 40.7091669408 -00 00 47.859690204 9.70 9.61 8.87 10.1 9.9 ~ 4425 2
3 NGC 1266 AGN 03 16 00.7739640240 -02 25 37.827013584   14   12.46   ~ 287 1
4 NGC 1433 GiG 03 42 01.4847418992 -47 13 18.929092656   10.84 9.99 9.61 10.2 ~ 352 0
5 NGC 1614 AGN 04 34 00.027 -08 34 44.57   14.66 13.99     ~ 649 0
6 M 82 IG 09 55 52.430 +69 40 46.93 9.61 9.30 8.41     ~ 5678 6
7 NGC 3256 IG 10 27 51.284 -43 54 13.55   11.83 11.33 10.62 11.9 ~ 811 2
8 Mrk 231 Sy1 12 56 14.2341182928 +56 52 25.238373852   14.68 13.84     ~ 1930 3
9 LEDA 60189 LIN 17 23 21.943 -00 17 00.96   15.1       ~ 410 0

To bookmark this query, right click on this link: simbad:objects in 2015A&A...580A..35G and select 'bookmark this link' or equivalent in the popup menu


2023.02.01-07:01:34

© Université de Strasbourg/CNRS

    • Contact