2015A&A...582A..32I


Query : 2015A&A...582A..32I

2015A&A...582A..32I - Astronomy and Astrophysics, volume 582A, 32-32 (2015/10-1)

Signature of the presence of a third body orbiting around XB 1916-053.

IARIA R., DI SALVO T., GAMBINO A.F., DEL SANTO M., ROMANO P., MATRANGA M., GALIANO C.G., SCARANO F., RIGGIO A., SANNA A., PINTORE F. and BURDERI L.

Abstract (from CDS):

The ultra-compact dipping source XB 1916-053 has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1M). The orbital period derivative of the source was estimated to be 1.5(3)x10–11s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadratic term or a different scenario has to be considered. We obtained 27 delays associated with the dip arrival times from data covering 37 years and used different models to fit the time delays with respect to a constant period model. We find that the quadratic form alone does not fit the data. The data are well fitted using a sinusoidal term plus a quadratic function or, alternatively, with a series of sinusoidal terms that can be associated with a modulation of the dip arrival times due to the presence of a third body that has an elliptical orbit. We infer that for a conservative mass transfer scenario the modulation of the delays can be explained by invoking the presence of a third body with mass between 0.10-0.14M, rbital period around the X-ray binary system of close to 51yr and an eccentricity of 0.28 ±0.15. In a non-conservative mass transfer scenario we estimate that the fraction of matter yielded by the degenerate companion star and accreted onto the neutron star is β=0.08, the neutron star mass is ≥2.2M, and the companion star mass is 0.028M. In this case, we explain the sinusoidal modulation of the delays by invoking the presence of a third body with orbital period of 26yr and mass of 0.055M. From the analysis of the delays associated with the dip arrival times, we find that both in a conservative and non-conservative mass transfer scenario we have to invoke the presence of a third body to explain the observed sinusoidal modulation. We propose that XB 1916-053 forms a hierarchical triple system.

Abstract Copyright:

Journal keyword(s): stars: neutron - stars: individual: XB 1916-053 - X-rays: binaries - X-rays: stars - ephemerides

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 PSR J1719-14 Psr 17 19 10.073 -14 38 00.96           ~ 72 2
2 V* V4580 Sgr LXB 18 08 27.54 -36 58 44.3   16.81 16.51     ~ 988 0
3 V* V691 CrA LXB 18 25 46.8185061768 -37 06 18.529336656 14.30 15.20 15.1     ~ 441 0
4 V* V1405 Aql LXB 19 18 47.871 -05 14 17.09 20.90 21.40 21.0     ~ 475 0

To bookmark this query, right click on this link: simbad:objects in 2015A&A...582A..32I and select 'bookmark this link' or equivalent in the popup menu