Query : 2015A&A...583A.108C

2015A&A...583A.108C - Astronomy and Astrophysics, volume 583A, 108-108 (2015/11-1)

Orbital period decay of compact black hole X-ray binaries: the influence of circumbinary disks?

CHEN W.-C. and LI X.-D.

Abstract (from CDS):

Recently, compact black hole X-ray binaries XTE J 1118+480 and A0620-00 have been reported to be experiencing a fast orbital period decay, which is two orders of magnitude higher than expected with gravitational wave radiation. Magnetic braking of an Ap/Bp star has been suggested to account for the period change when the surface magnetic field of the companion star Bs>104G. However, our calculation indicates that anomalous magnetic braking cannot significantly contribute to the large orbital period decay rates observed in these two sources even if Bs>104G. Observations have provided evidence that circumbinary disks around two compact black hole X-ray binaries may exist. Our analysis shows that, for some reasonable parameters, tidal torque between the circumbinary disk and the binary can efficiently extract the orbital angular momentum from the binary, and result in a large orbital period change rate. Based on the circumbinary disk model, we simulate the evolution of XTE J 1118+480 via a stellar evolution code. Our computations are approximatively in agreement with the observed data (the masses of two components, donor star radius, orbital period, and orbital period derivative). The mass transfer rate and circumbinary disk mass are obviously far greater than the inferred values from observations. Therefore, it seems that the circumbinary disk is unlikely to be the main cause of the rapid orbital decay observed in some compact black hole X-ray binaries.

Abstract Copyright:

Journal keyword(s): stars: black holes - stars: evolution - stars: mass-loss - X-rays: binaries

Simbad objects: 2

goto Full paper

goto View the references in ADS

Number of rows : 2
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2022
1 1A 0620-00 HXB 06 22 44.5423857312 -00 20 44.290460544 10.60 11.40 11.2     K3V-K7V 1073 0
2 V* KV UMa HXB 11 18 10.7930420496 +48 02 12.314730120     12.25     K5V-M1V 768 0

To bookmark this query, right click on this link: simbad:objects in 2015A&A...583A.108C and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact