C.D.S. - SIMBAD4 rel 1.7 - 2020.06.03CEST21:21:06

2016A&A...592A..21F - Astronomy and Astrophysics, volume 592A, 21-21 (2016/8-1)

Are infrared dark clouds really quiescent?


Abstract (from CDS):

Context. The dense, cold regions where high-mass stars form are poorly characterized, yet they represent an ideal opportunity to learn more about the initial conditions of high-mass star formation (HMSF) since high-mass starless cores (HMSCs) lack the violent feedback seen at later evolutionary stages.
Aims. We investigate the initial conditions of HMSF by studying the dynamics and chemistry of HMSCs.
Methods. We present continuum maps obtained from the Submillimeter Array (SMA) interferometry at 1.1mm for four infrared dark clouds (IRDCs, G28.34 S, IRDC 18530, IRDC 18306, and IRDC 18308). For these clouds, we also present line surveys at 1mm/3mm obtained from IRAM 30 m single-dish observations.
Results. (1) At an angular resolution of 2'' (∼104AU at an average distance of 4kpc), the 1.1mm SMA observations resolve each source into several fragments. The mass of each fragment is on average >10M, which exceeds the predicted thermal Jeans mass of the entire clump by a factor of up to 30, indicating that thermal pressure does not dominate the fragmentation process. Our measured velocity dispersions in the lines obtained by 30 m imply that non-thermal motion provides the extra support against gravity in the fragments. (2) Both non-detection of high-J transitions and the hyperfine multiplet fit of N2H+ (J=1-0), C2H (N=1-0), HCN (J=1-0), and H13CN (J=1-0) indicate that our sources are cold and young. However, the obvious detection of SiO and the asymmetric line profile of HCO+ (J=1-0) in G28.34 S indicate a potential protostellar object and probable infall motion. (3) With a large number of N-bearing species, the existence of carbon rings and molecular ions, and the anti-correlated spatial distributions between N2H+/NH2D and CO, our large-scale high-mass clumps exhibit similar chemical features to small-scale low-mass prestellar objects.
Conclusions. This study of a small sample of IRDCs illustrates that thermal Jeans instability alone cannot explain the fragmentation of the clump into cold (T∼15K), dense (>105cm–3) cores and that these IRDCs are not completely quiescent.

Abstract Copyright: © ESO, 2016

Journal keyword(s): stars: formation - stars: massive - ISM: lines and bands - ISM: molecules - submillimeter: ISM - ISM: abundances

VizieR on-line data: <Available at CDS (J/A+A/592/A21): list.dat fits/*>

Status at CDS:  

Simbad objects: 0

goto Full paper

goto View the reference in ADS

Number of rows : 0

To bookmark this query, right click on this link: simbad:objects in 2016A&A...592A..21F and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact