Query : 2016A&A...595A..92J

2016A&A...595A..92J - Astronomy and Astrophysics, volume 595A, 92-92 (2016/11-1)

Understanding the periodicities in radio and GeV emission from LS I +61°303.


Abstract (from CDS):

Context. One possible scenario to explain the emission from the stellar binary system LS I + 61deg303 is that the observed flux is emitted by precessing jets powered by accretion. Accretion models predict two ejections along the eccentric orbit of LS I + 61deg303: one major ejection at periastron and a second, lower ejection towards apastron. Our GeV gamma-ray observations show two peaks along the orbit (orbital period P1) but reveal that at apastron the emission is also affected by a second periodicity, P2. Strong radio outbursts also occur at apastron, which are affected by both periodicities (i.e. P1 and P2), and radio observations show that P2 is the precession of the radio jet. Consistently, a long-term modulation, equal to the beating of P1 and P2, affects both radio and gamma-ray emission at apastron but it does not affect gamma-ray emission at periastron.
Aims. If there are two ejections, why does the one at periastron not produce a radio outburst there? Is the lack of a periastron radio outburst somehow related to the lack of P2 from the periastron gamma-ray emission? Methods. We develop a physical model in which relativistic electrons are ejected twice along the orbit. The ejecta form a conical jet that is precessing with P2. The jet radiates in the radio band by the synchrotron process and the jet radiates in the GeV energy band by the external inverse Compton and synchrotron self-Compton processes. We compare the output fluxes of our physical model with two available large archives: Owens Valley Radio Observatory (OVRO) radio and Fermi Large Area Telescope (LAT) GeV observations, the two databases overlapping for five years.
Results. The larger ejection around periastron passage results in a slower jet, and severe inverse Compton losses result in the jet also being short. While large gamma-ray emission is produced, there is only negligible radio emission. Our results are that the periastron jet has a length of 3.0x106rs and a velocity β∼0.006, whereas the jet at apastron has a length of 6.3x107rs and β∼0.5.
Conclusions. In the accretion scenario the observed periodicities can be explained if the observed flux is the intrinsic flux, which is a function of P1, times the Doppler factor, a function of βcos(f(P2)). At periastron, the Doppler factor is scarcely influenced by P2 because of the low β. At apastron the larger β gives rise to a significant Doppler factor with noticeable variations induced by jet precession.

Abstract Copyright: © ESO 2016

Journal keyword(s): X-rays: binaries - radio continuum: stars - X-rays: individuals: LS I +61 303 - gamma rays: stars

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
1 LS I +61 303 HXB 02 40 31.6644419688 +61 13 45.593918580 11.27 11.61 10.75 10.19 9.55 B0Ve 833 2
2 M 1 SNR 05 34 30.9 +22 00 53           ~ 6120 1
3 HD 226868 HXB 19 58 21.6757355952 +35 12 05.784512688 9.38 9.72 8.91 8.42   O9.7Iabpvar 4282 0

To bookmark this query, right click on this link: simbad:objects in 2016A&A...595A..92J and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact