2017A&A...598A.133D


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.14CEST19:30:41

2017A&A...598A.133D - Astronomy and Astrophysics, volume 598A, 133-133 (2017/2-1)

Radial-velocity fitting challenge. II. First results of the analysis of the data set.

DUMUSQUE X., BORSA F., DAMASSO M., DIAZ R.F., GREGORY P.C., HARA N.C., HATZES A., RAJPAUL V., TUOMI M., AIGRAIN S., ANGLADA-ESCUDE G., BONOMO A.S., BOUE G., DAUVERGNE F., FRUSTAGLI G., GIACOBBE P., HAYWOOD R.D., JONES H.R.A., LASKAR J., PINAMONTI M., PORETTI E., RAINER M., SEGRANSAN D., SOZZETTI A. and UDRY S.

Abstract (from CDS):

Context. Radial-velocity (RV) signals arising from stellar photospheric phenomena are the main limitation for precise RV measurements. Those signals induce RV variations an order of magnitude larger than the signal created by the orbit of Earth-twins, thus preventing their detection.
Aims. Different methods have been developed to mitigate the impact of stellar RV signals. The goal of this paper is to compare the efficiency of these different methods to recover extremely low-mass planets despite stellar RV signals. However, because observed RV variations at the meter-per-second precision level or below is a combination of signals induced by unresolved orbiting planets, by the star, and by the instrument, performing such a comparison using real data is extremely challenging.
Methods. To circumvent this problem, we generated simulated RV measurements including realistic stellar and planetary signals. Different teams analyzed blindly those simulated RV measurements, using their own method to recover planetary signals despite stellar RV signals. By comparing the results obtained by the different teams with the planetary and stellar parameters used to generate the simulated RVs, it is therefore possible to compare the efficiency of these different methods.
Results. The most efficient methods to recover planetary signals take into account the different activity indicators, use red-noise models to account for stellar RV signals and a Bayesian framework to provide model comparison in a robust statistical approach. Using the most efficient methodology, planets can be found down to K/N=Kpl/RVrms*(Nobs)1/2=5 with a threshold of K/N=7.5 at the level of 80-90% recovery rate found for a number of methods. These recovery rates drop dramatically for K/N smaller than this threshold. In addition, for the best teams, no false positives with K/N>7.5 were detected, while a non-negligible fraction of them appear for smaller K/N. A limit of K/N=7.5 seems therefore a safe threshold to attest the veracity of planetary signals for RV measurements with similar properties to those of the different RV fitting challenge systems.

Abstract Copyright: © ESO, 2017

Journal keyword(s): techniques: radial velocities - planetary systems - stars: oscillations - stars: activity - methods: data analysis

Simbad objects: 23

goto Full paper

goto View the reference in ADS

Number of rows : 23

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 HD 10180b Pl? 01 37 53.5773715933 -60 30 41.485438420           ~ 13 1
2 HD 10180h Pl 01 37 53.5773715933 -60 30 41.485438420           ~ 14 1
3 HD 10180g Pl 01 37 53.5773715933 -60 30 41.485438420           ~ 14 1
4 HD 10180e Pl 01 37 53.5773715933 -60 30 41.485438420           ~ 11 1
5 HD 10180d Pl 01 37 53.5773715933 -60 30 41.485438420           ~ 13 1
6 * tau Cet e Pl 01 44 04.0834226 -15 56 14.926552           ~ 7 0
7 * tau Cet f Pl 01 44 04.0834226 -15 56 14.926552           ~ 6 0
8 * tau Cet b Pl? 01 44 04.0834226 -15 56 14.926552           ~ 3 0
9 * tau Cet c Pl? 01 44 04.0834226 -15 56 14.926552           ~ 3 0
10 * tau Cet d Pl? 01 44 04.0834226 -15 56 14.926552           ~ 3 0
11 HD 40307 PM* 05 54 04.2409953924 -60 01 24.491747849 8.814 8.097 7.147 6.597 6.119 K2.5V 199 1
12 CoRoT-7c Pl 06 43 49.4690410679 -01 03 46.825797768           ~ 39 1
13 CoRoT-7b Pl 06 43 49.4690410679 -01 03 46.825797768           ~ 346 1
14 CoRoT-7d Pl? 06 43 49.4690410679 -01 03 46.825797768           ~ 12 1
15 CoRoT-7 * 06 43 49.4690410679 -01 03 46.825797768   12.78 11.73 11.36 10.87 K0V 172 1
16 HD 69830 PM* 08 18 23.9469692487 -12 37 55.810202572   6.74 5.95     G8:V 464 2
17 HD 85512b Pl 09 51 07.0520306762 -43 30 10.021950881           ~ 25 1
18 BD-07 4003 BY* 15 19 26.8271336166 -07 43 20.190958776 13.403 11.76 10.560 9.461 8.911 M3V 534 2
19 HD 156384C PM* 17 18 58.8271844065 -34 59 48.612934284 12.96 11.79 10.22 10.05 8.82 M1.5V 163 1
20 Kepler-78 EB* 19 34 58.0139307295 +44 26 53.957326851   12.87 11.72     K2 50 1
21 HD 189733 BY* 20 00 43.7130382888 +22 42 39.071811263 9.241 8.578 7.648 7.126 6.68 K2V 720 1
22 HD 192310b Pl 20 15 17.3916558603 -27 01 58.713584596           ~ 20 1
23 HD 192310c Pl 20 15 17.3916558603 -27 01 58.713584596           ~ 16 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2017A&A...598A.133D and select 'bookmark this link' or equivalent in the popup menu


2020.07.14-19:30:41

© Université de Strasbourg/CNRS

    • Contact