2017A&A...599A..16L


Query : 2017A&A...599A..16L

2017A&A...599A..16L - Astronomy and Astrophysics, volume 599A, 16-16 (2017/3-1)

Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph.

LOVIS C., SNELLEN I., MOUILLET D., PEPE F., WILDI F., ASTUDILLO-DEFRU N., BEUZIT J.-L., BONFILS X., CHEETHAM A., CONOD U., DELFOSSE X., EHRENREICH D., FIGUEIRA P., FORVEILLE T., MARTINS J.H.C., QUANZ S.P., SANTOS N.C., SCHMID H.-M., SEGRANSAN D. and UDRY S.

Abstract (from CDS):

Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System.
Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra.
Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ∼10–7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a ∼103-104 contrast enhancement from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the stellar ones.
Results. We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5σ detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760nm, the water vapour band at 717nm, and the methane band at 715nm. In particular, a 3.6σ detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over three years considering optimal observability conditions for the planet.
Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of extremely large telescopes and their instruments, in particular the E-ELT and its high-resolution visible and near-IR spectrograph.

Abstract Copyright: © ESO, 2017

Journal keyword(s): planets and satellites: individual: Proxima b - planets and satellites: atmospheres - techniques: spectroscopic - techniques: high angular resolution - techniques: high angular resolution

Simbad objects: 9

goto Full paper

goto View the references in ADS

Number of rows : 9
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 * bet Pic b Pl 05 47 17.0876901 -51 03 59.441135           ~ 406 1
2 NAME Proxima Centauri b Pl 14 29 42.9451234609 -62 40 46.170818907           ~ 267 0
3 NAME Proxima Centauri Er* 14 29 42.9451234609 -62 40 46.170818907 14.21 12.95 11.13 9.45 7.41 M5.5Ve 1078 0
4 * alf Cen Bb err 14 39 35.06 -60 50 15.1           ~ 39 2
5 BD+68 946b Pl 17 36 25.8991699744 +68 20 20.904135942           ~ 11 0
6 BD+68 946 PM* 17 36 25.8991699744 +68 20 20.904135942 11.73 10.65   8.3   M3.0V 265 0
7 BD-15 6290b Pl 22 53 16.7323107416 -14 15 49.303409936           ~ 226 1
8 TRAPPIST-1 LM* 23 06 29.3684052886 -05 02 29.031690445     18.798 16.466 14.024 M7.5e 632 0
9 HD 219134d Pl 23 13 16.9747821012 +57 10 06.076520993           ~ 11 0

To bookmark this query, right click on this link: simbad:objects in 2017A&A...599A..16L and select 'bookmark this link' or equivalent in the popup menu


2021.10.27-11:23:19

© Université de Strasbourg/CNRS

    • Contact