2017A&A...600A..57C


Query : 2017A&A...600A..57C

2017A&A...600A..57C - Astronomy and Astrophysics, volume 600A, 57-57 (2017/4-1)

The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?

CHIABERGE M., ELY J.C., MEYER E.T., GEORGANOPOULOS M., MARINUCCI A., BIANCHI S., TREMBLAY G.R., HILBERT B., KOTYLA J.P., CAPETTI A., BAUM S.A., MACCHETTO F.D., MILEY G., O'DEA C.P., PERLMAN E.S., SPARKS W.B. and NORMAN C.

Abstract (from CDS):

Context. Radio-loud active galactic nuclei with powerful relativistic jets are thought to be associated with rapidly spinning black holes (BHs). BH spin-up may result from a number of processes, including accretion of matter onto the BH itself, and catastrophic events such as BH-BH mergers.
Aims. We study the intriguing properties of the powerful (Lbol∼1047erg/s) radio-loud quasar 3C 186. This object shows peculiar features both in the images and in the spectra.
Methods. We utilize near-IR Hubble Space Telescope (HST) images to study the properties of the host galaxy, and HST UV and Sloan Digital Sky Survey optical spectra to study the kinematics of the source. Chandra X-ray data are also used to better constrain the physical interpretation.
Results. HST imaging shows that the active nucleus is offset by 1.3±0.1arcsec (i.e. ∼11kpc) with respect to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by -2140±390km/s with respect to the narrow lines. Velocity shifts are often seen in QSO spectra, in particular in high-ionization broad emission lines. The host galaxy of the quasar displays a distorted morphology with possible tidal features that are typical of the late stages of a galaxy merger.
Conclusions. A number of scenarios can be envisaged to account for the observed features. While the presence of a peculiar outflow cannot be completely ruled out, all of the observed features are consistent with those expected if the QSO is associated with a gravitational wave (GW) recoiling BH. Future detailed studies of this object will allow us to confirm this type of scenario and will enable a better understanding of both the physics of BH-BH mergers and the phenomena associated with the emission of GW from astrophysical sources.

Abstract Copyright: © ESO, 2017

Journal keyword(s): galaxies: active - quasars: individual: 3C 186 - galaxies: jets - gravitational waves - gravitational waves

Simbad objects: 6

goto Full paper

goto View the references in ADS

Number of rows : 6
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2022
#notes
1 NGC 985 Sy1 02 34 37.882 -08 47 17.02   14.64 14.28 12.9   ~ 381 0
2 3C 186 QSO 07 44 17.4720658920 +37 53 17.250697320   17.5 18.14 17.2   ~ 305 1
3 [VV2006] J095632.5+512824 QSO 09 56 32.4881642736 +51 28 23.811390264   19.57 19.24     ~ 23 0
4 NGC 3718 GiP 11 32 34.8571790688 +53 04 04.520222040   11.35 10.61     ~ 362 1
5 SDSS J113323.97+550415.8 Sy1 11 33 23.9777686200 +55 04 15.894140412           ~ 16 1
6 NGC 5548 Sy1 14 17 59.5400291832 +25 08 12.603122268   14.35 13.73     ~ 2559 0

To bookmark this query, right click on this link: simbad:objects in 2017A&A...600A..57C and select 'bookmark this link' or equivalent in the popup menu


2022.10.02-01:49:59

© Université de Strasbourg/CNRS

    • Contact