2018A&A...611A..43L


Query : 2018A&A...611A..43L

2018A&A...611A..43L - Astronomy and Astrophysics, volume 611A, 43-43 (2018/3-1)

Dynamical models to explain observations with SPHERE in planetary systems with double debris belts.

LAZZONI C., DESIDERA S., MARZARI F., BOCCALETTI A., LANGLOIS M., MESA D., GRATTON R., KRAL Q., PAWELLEK N., OLOFSSON J., BONNEFOY M., CHAUVIN G., LAGRANGE A.M., VIGAN A., SISSA E., ANTICHI J., AVENHAUS H., BARUFFOLO A., BAUDINO J.L., BAZZON A., BEUZIT J.L., BILLER B., BONAVITA M., BRANDNER W., BRUNO P., BUENZLI E., CANTALLOUBE F., CASCONE E., CHEETHAM A., CLAUDI R.U., CUDEL M., DAEMGEN S., DE CAPRIO V., DELORME P., FANTINEL D., FARISATO G., FELDT M., GALICHER R., GINSKI C., GIRARD J., GIRO E., JANSON M., HAGELBERG J., HENNING T., INCORVAIA S., KASPER M., KOPYTOVA T., LECOROLLER H., LESSIO L., LIGI R., MAIRE A.L., MENARD F., MEYER M., MILLI J., MOUILLET D., PERETTI S., PERROT C., ROUAN D., SAMLAND M., SALASNICH B., SALTER G., SCHMIDT T., SCUDERI S., SEZESTRE E., TURATTO M., UDRY S., WILDI F. and ZURLO A.

Abstract (from CDS):


Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE.
Methods. The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE.
Results. For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits.

Abstract Copyright: © ESO 2018

Journal keyword(s): planet-disk interactions - Kuiper belt: general - instrumentation: high angular resolution - techniques: image processing - methods: analytical - methods: observational

Simbad objects: 49

goto Full paper

goto View the references in ADS

Number of rows : 49
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 HD 1466 Er* 00 18 26.1235857360 -63 28 38.980983432   8.00 7.46     F8V 109 0
2 * bet03 Tuc ** 00 32 43.9053745704 -63 01 53.402028960 5.15 5.13 5.09     A0V 121 0
3 HD 15115 PM* 02 26 16.2457848552 +06 17 33.186453252   7.15 6.80   6.33 F4IV 185 0
4 * eps Eri BY* 03 32 55.8444911587 -09 27 29.739493865 5.19 4.61 3.73 3.00 2.54 K2V 1837 1
5 HD 30447 * 04 46 49.5286580976 -26 18 08.851615452   8.25 7.86   7.39 F3V 73 0
6 V* AS Col RS* 05 20 38.0482052304 -39 45 17.797423968   7.89 7.38   6.81 F6V 71 1
7 * zet Lep * 05 46 57.3409587 -14 49 19.019943   3.637 3.525     A2IV-V(n) 291 0
8 * bet Pic PM* 05 47 17.0876901 -51 03 59.441135 4.13 4.03 3.86 3.74 3.58 A6V 1813 1
9 V* V1358 Ori BY* 06 19 08.0574987312 -03 26 20.361237864   8.52 7.95     G0V 107 0
10 HD 61005 PM* 07 35 47.4623556456 -32 12 14.045086368   8.96 8.22     G8Vk 210 0
11 * 30 Mon PM* 08 25 39.6320108 -03 54 23.117820 3.85 3.88 3.90 3.87 3.92 A0Va 270 0
12 * eta Cha * 08 41 19.5125857944 -78 57 48.105898056 5.02 5.351 5.453     B8V 224 0
13 HD 82943 PM* 09 34 50.7353072232 -12 07 46.369202196   7.17 6.53     F9VFe+0.5 451 2
14 HD 84075 TT* 09 36 17.8234661352 -78 20 41.588588076   9.18 8.59     G2V 54 0
15 HD 95086 * 10 57 03.0215719872 -68 40 02.449216128   7.60 7.36     A8III 157 1
16 NAME TW Hya Association As* 11 01.9 -34 42           ~ 907 0
17 * bet Leo dS* 11 49 03.57834 +14 34 19.4090 2.30 2.22 2.13 2.08 2.06 A3Va 566 0
18 HD 106906B BD* 12 17 52.61 -55 58 26.6           L2.5 81 0
19 HD 106906 * 12 17 53.1915103944 -55 58 31.893027240   8.95 8.89 8.46   F5V 133 0
20 NAME Lower Centaurus Crux As* 12 19 -57.1           ~ 438 1
21 HD 107301 * 12 20 28.2217292304 -65 50 33.568205244   6.149 6.186     B9V 47 0
22 HD 109573B Y*? 12 36 00.5491381248 -39 52 15.693558816         10.78 M2.5 81 0
23 HD 109573 PM* 12 36 01.0317461592 -39 52 10.220465388   5.786 5.774 7.25 5.81 A0V 602 1
24 * rho Vir dS* 12 41 53.0569475088 +10 14 08.252569320 5.00 4.97 4.88 4.80 4.78 A0Va_lB 218 0
25 HD 120326 * 13 49 54.5032282344 -50 14 23.876991348   8.75 8.39     F0V 56 0
26 HD 122705 * 14 04 42.1486781136 -50 04 17.066297316   7.76 7.64     A2V 30 0
27 HD 128311 BY* 14 36 00.5602765558 +09 44 47.454573266 9.232 8.441 7.446 6.895 6.425 K3V 295 1
28 HD 131835 * 14 56 54.4677661992 -35 41 43.658813184   8.05 7.86     A2IV 110 0
29 HD 133803 gD* 15 07 14.9365580040 -29 30 16.132469112   8.47 8.12     F2IVm-2 50 0
30 HD 133863 * 15 07 47.2950555312 -33 10 13.138638132   10.31 9.49     G8/K0(III)+(A) 10 0
31 * bet Cir PM* 15 17 30.8501567 -58 48 04.337319   4.153 4.057     A3Va 119 0
32 HD 140840 * 15 47 06.1673323416 -35 31 04.939301388   7.26 7.26     B9/A0V 32 0
33 * 30 Ser * 15 48 56.7969566256 -03 49 06.637937808   5.646 5.524     A5IV-V 74 0
34 NAME Upper Sco-Cen As* 16 15 -24.2           ~ 1267 1
35 * pi. Ara PM* 17 38 05.5153908936 -54 30 01.562028048   5.431 5.242     A5IV/V 91 0
36 * alf Lyr dS* 18 36 56.33635 +38 47 01.2802 0.03 0.03 0.03 0.07 0.10 A0Va 2623 0
37 V* PZ Tel BY* 18 53 05.8735056984 -50 10 49.897437168   9.22 8.342   7.464 G9IV 316 0
38 * alf CrA PM* 19 09 28.3409747 -37 54 16.102206   4.146 4.087     A2Va 109 0
39 * eta Tel PM* 19 22 51.2060774616 -54 25 26.145617376   5.035 5.020   4.99 A0V 207 0
40 HD 181327 PM* 19 22 58.9437222504 -54 32 16.975668624   7.50 7.04   6.49 F6V 268 0
41 * eps Pav PM* 20 00 35.5555788 -72 54 37.819779   3.927 3.940     A0Va 123 0
42 * rho Aql PM* 20 14 16.6186826232 +15 11 51.386417088   5.006 4.946     A1Va 125 0
43 HD 202206 PM* 21 14 57.7686051936 -20 47 21.161521320   8.79 8.07     G6V 219 1
44 HD 202917 Er* 21 20 49.9576157736 -53 02 03.155667216   9.32 8.67   7.882 G7V 162 0
45 HD 206893 PM* 21 45 21.9052532928 -12 47 00.060804636   7.11 6.67     F5V 92 0
46 * alf PsA ** 22 57 39.04625 -29 37 20.0533 1.31 1.25 1.16 1.11 1.09 A4V 1195 3
47 HD 218396 El* 23 07 28.7157209544 +21 08 03.310767492   6.21 5.953     F0+VkA5mA5 1057 0
48 HD 219482 PM* 23 16 57.6874876272 -62 00 04.312068048   6.146 5.647     F6V 116 0
49 * kap Psc a2* 23 26 55.9558721856 +01 15 20.177913204 4.94 4.98 4.94 4.87 4.90 A2VpSrCrSi 268 0

To bookmark this query, right click on this link: simbad:objects in 2018A&A...611A..43L and select 'bookmark this link' or equivalent in the popup menu


2023.01.27-23:05:20

© Université de Strasbourg/CNRS

    • Contact