2018A&A...612A..42D


C.D.S. - SIMBAD4 rel 1.7 - 2019.12.13CET16:24:41

2018A&A...612A..42D - Astronomy and Astrophysics, volume 612A, 42-42 (2018/4-1)

The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z ∼ 3.

DURKALEC A., LE FEVRE O., POLLO A., ZAMORANI G., LEMAUX B.C., GARILLI B., BARDELLI S., HATHI N., KOEKEMOER A., PFORR J. and ZUCCA E.

Abstract (from CDS):

We present a study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2<z<3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS), covering a total area of 0.92deg2. We measured the two-point real-space correlation function wp(rp) for four volume-limited subsamples selected by stellar mass and four volume-limited subsamples selected by MUV absolute magnitude. We find that the scale-dependent clustering amplitude r0 significantly increases with increasing luminosity and stellar mass. For the least luminous galaxies (MUV←19.0), we measured a correlation length r0=2.87±0.22h–1Mpc and slope γ=1.59±0.07, while for the most luminous (MUV←20.2) r0=5.35±0.50h–1Mpc and γ=1.92±0.25. These measurements correspond to a strong relative bias between these two subsamples of Δb/b*=0.43. Fitting a five-parameter halo occupation distribution (HOD) model, we find that the most luminous (MUV←20.2) and massive (M*>1010h–1M) galaxies occupy the most massive dark matter haloes with <Mh≥1012.30h–1M. Similar to the trends observed at lower redshift, the minimum halo mass Mmin depends on the luminosity and stellar mass of galaxies and grows from Mmin=109.73h–1M to Mmin=1011.58h–1M from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z∼3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1~=4Mmin over all luminosity ranges, which is significantly lower than observed at z∼0; this indicates that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large-scale galaxy bias, which we model as bg,HOD(>L)=1.92+25.36(L/L*)7.01. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR). We observe a significant model-observation discrepancy for low-mass galaxies, suggesting a higher than expected star formation efficiency of these galaxies.

Abstract Copyright: © ESO 2018

Journal keyword(s): large-scale structure of Universe - galaxies: statistics - galaxies: structure - dark matter - galaxies: high-redshift

Simbad objects: 3

goto Full paper

goto View the reference in ADS

Number of rows : 3

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 NAME Extended Chandra Deep Field South reg 03 32 30.0 -27 48 20           ~ 591 0
2 NAME Hubble Ultra Deep Field reg 03 32 39.0 -27 47 29           ~ 1229 0
3 NAME COSMOS Field reg 10 00 28.60 +02 12 21.0           ~ 1910 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...612A..42D and select 'bookmark this link' or equivalent in the popup menu


2019.12.13-16:24:41

© Université de Strasbourg/CNRS

    • Contact