2018A&A...615A.129J


Query : 2018A&A...615A.129J

2018A&A...615A.129J - Astronomy and Astrophysics, volume 615A, 129-129 (2018/7-1)

Structure of photodissociation fronts in star-forming regions revealed by Herschel observations of high-J CO emission lines.

JOBLIN C., BRON E., PINTO C., PILLERI P., LE PETIT F., GERIN M., LE BOURLOT J., FUENTE A., BERNE O., GOICOECHEA J.R., HABART E., KOHLER M., TEYSSIER D., NAGY Z., MONTILLAUD J., VASTEL C., CERNICHARO J., ROLLIG M., OSSENKOPF-OKADA V. and BERGIN E.A.

Abstract (from CDS):


Context. In bright photodissociation regions (PDR) associated with massive star formation, the presence of dense "clumps" that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines.
Aims. We aim to present a comprehensive view of the modelling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces.
Methods. We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, and H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and were analysed using the Meudon PDR code.
Results. A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to Jup=23 in the Orion Bar (Jup=19 in NGC 7023), can only originate from small structures with typical thicknesses of a few 10–3pc and at high thermal pressures (Pth∼108K/cm3).
Conclusions. Compiling data from the literature, we find that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help to rationalise the analysis of high-J CO emission in massive star formation and provides an observational constraint for models which study stellar feedback on molecular clouds.

Abstract Copyright: © ESO 2018

Journal keyword(s): photon-dominated region - ISM: individual objects: Orion Bar - ISM: individual objects: NGC 7023 - ISM: lines and bands - submillimeter: ISM - molecular processes

Simbad objects: 16

goto Full paper

goto View the references in ADS

Number of rows : 16
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 NAME Orion S reg 05 35 12.9 -05 24 10           ~ 139 0
2 M 42 HII 05 35 17 -05 23.4           ~ 4026 0
3 NAME Orion Bright Bar reg 05 35 22.30 -05 24 33.0           ~ 842 0
4 HD 38087 ** 05 43 00.5754723576 -02 18 45.389406240 7.96 8.40 8.29 8.06 7.89 B3II 167 1
5 NGC 3372 HII 10 45 02.23 -59 41 59.8           ~ 997 2
6 NAME Galactic Center reg 17 45 39.60213 -29 00 22.0000           ~ 13915 0
7 NAME Sgr A* X 17 45 40.03599 -29 00 28.1699           ~ 4225 3
8 NAME Sgr B2 (North) Rad 17 47 20.2 -28 22 21           ~ 647 1
9 NAME Sgr B2 MoC 17 47 20.4 -28 23 07           ~ 2200 1
10 NAME Sgr B2 Main Rad 17 47 20.5 -28 23 06           ~ 390 1
11 NAME M 17 SW SFR 18 20 23.1 -16 11 43           ~ 268 0
12 W 49n HII 19 10 13.2 +09 06 12           ~ 461 3
13 W 49a SFR 19 10 15.7 +09 06 05           ~ 298 2
14 SH 2-106 HII 20 27 26.8 +37 22 49           ~ 432 2
15 NGC 7023 RNe 21 01 36.9 +68 09 48           ~ 693 0
16 SH 2-159 Y*O 23 15 31.2384366062 +61 07 10.181362705           ~ 179 2

To bookmark this query, right click on this link: simbad:objects in 2018A&A...615A.129J and select 'bookmark this link' or equivalent in the popup menu


2023.10.05-01:19:06

© Université de Strasbourg/CNRS

    • Contact