2018A&A...616A..76S


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.08CEST04:12:05

2018A&A...616A..76S - Astronomy and Astrophysics, volume 616A, 76-76 (2018/8-1)

Investigating hot-Jupiter inflated radii with hierarchical Bayesian modelling.

SESTOVIC M., DEMORY B.-O. and QUELOZ D.

Abstract (from CDS):


Context. As of today, hundreds of hot Jupiters have been found, yet the inflated radii of a large fraction of them remain unexplained. A number of mechanisms have been proposed to explain these anomalous radii, however most of these can only work under certain conditions and may not be sufficient to explain the most extreme cases. It is still unclear whether a single mechanism can sufficiently explain the entire distribution of radii, or whether a combination of these mechanisms is needed.
Aims. We seek to understand the relationship of radius with stellar irradiation and mass and to find the range of masses over which hot Jupiters are inflated. We also aim to find the intrinsic physical scatter in their radii, caused by unobservable parameters, and to constrain the fraction of hot Jupiters that exhibit inflation.
Methods. By constructing a hierarchical Bayesian model, we inferred the probabilistic relation between planet radius, mass, and incident flux for a sample of 286 gas giants. We separately incorporated the observational uncertainties of the data and the intrinsic physical scatter in the population. This allowed us to treat the intrinsic physical scatter in radii, due to latent parameters such as the heavy element fraction, as a parameter to be inferred.
Results. We find that the planetary mass plays a key role in the inflation extent and that planets in the range ∼0.37-0.98MJ show the most inflated radii. At higher masses, the radius response to incident flux begins to decrease. Below a threshold of 0.37±0.03MJ we find that giant exoplanets as a population are unable to maintain inflated radii ≳1.4RJ but instead exhibit smaller sizes as the incident flux is increased beyond 106W/m2. We also find that below 1MJ, there is a cut-off point at high incident flux beyond which we find no more inflated planets, and that this cut-off point decreases as the mass decreases. At incident fluxes higher than ∼1.6x106W/m and in a mass range 0.37-0.98MJ, we find no evidence for a population of non-inflated hot Jupiters. Our study sheds a fresh light on one of the key questions in the field and demonstrates the importance of population-level analysis to grasp the underlying properties of exoplanets.

Abstract Copyright: © ESO 2018

Journal keyword(s): planets and satellites: fundamental parameters - planets and satellites: atmospheres - methods: statistical

Simbad objects: 7

goto Full paper

goto View the reference in ADS

Number of rows : 7

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 CD-38 3220b Pl 07 10 24.0606039387 -39 05 50.570553937           ~ 88 0
2 CD-27 10695b Pl 15 59 50.9489706053 -28 03 42.309432433           ~ 196 1
3 HD 149026b Pl 16 30 29.6184841164 +38 20 50.310893575           ~ 297 1
4 HATS-9b Pl 19 23 14.4314651167 -20 09 58.849138687           ~ 17 0
5 Kepler-435b Pl 19 29 08.9490750554 +43 11 50.160271524           ~ 23 0
6 Kepler-41b Pl 19 38 03.1746358686 +45 58 53.876517436           ~ 51 1
7 Kepler-539b Pl 19 56 29.3872177213 +41 52 00.317939998           ~ 30 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...616A..76S and select 'bookmark this link' or equivalent in the popup menu


2020.07.08-04:12:06

© Université de Strasbourg/CNRS

    • Contact