C.D.S. - SIMBAD4 rel 1.7 - 2020.07.08CEST04:29:56

2018A&A...616A..78M - Astronomy and Astrophysics, volume 616A, 78-78 (2018/8-1)

Structure and fragmentation of a high line-mass filament: Nessie.


Abstract (from CDS):

Context. An increasing number of hundred-parsec-scale, high line-mass filaments are being detected in the Galaxy. Their evolutionary path, including fragmentation towards star formation, is virtually unknown.
Aims. We characterize the fragmentation within the hundred-parsec-scale, high line-mass Nessie filament, covering size-scales in the range ∼0.1-100pc. We also connect the small-scale fragments to the star-forming potential of the cloud.
Methods. We combine near-infrared data from the VISTA Variables in the Via Lactea (VVV) survey with mid-infrared Spitzer/GLIMPSE data to derive a high-resolution dust extinction map for Nessie. We then apply a wavelet decomposition technique on the map to analyze the fragmentation characteristics of the cloud. The characteristics are then compared with predictions from gravitational fragmentation models. We compare the detected objects to those identified at a resolution approximately ten times lower from ATLASGAL 870µm dust emission data.
Results. We present a high-resolution extinction map of Nessie (2'' full-width-half-max, FWHM, corresponding to 0.03pc). We estimate the mean line mass of Nessie to be ∼627M/pc and the distance to be ∼3.5kpc. We find that Nessie shows fragmentation at multiple size scales. The median nearest-neighbor separations of the fragments at all scales are within a factor of two of the Jeans' length at that scale. However, the relationship between the mean densities of the fragments and their separations is significantly shallower than expected for Jeans' fragmentation. The relationship is similar to the one predicted for a filament that exhibits a Larson-like scaling between size-scale and velocity dispersion; such a scaling may result from turbulent support. Based on the number of young stellar objects (YSOs) in the cloud, we estimate that the star formation rate (SFR) of Nessie is ∼371M/Myr; similar values result if using the number of dense cores, or the amount of dense gas, as the proxy of star formation. The star formation efficiency is 0.017. These numbers indicate that by its star-forming content, Nessie is comparable to the Solar neighborhood giant molecular clouds like Orion A.

Abstract Copyright: © ESO 2018

Journal keyword(s): stars: formation - infrared: ISM - ISM: clouds - dust, extinction

VizieR on-line data: <Available at CDS (J/A+A/616/A78): list.dat fits/*>

CDS comments: Table 2 clumps not in SIMBAD. Table F.1 Structures not in SIMBAD.

Simbad objects: 7

goto Full paper

goto View the reference in ADS

Number of rows : 7

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 NAME Taurus Complex SFR 04 41.0 +25 52           ~ 3478 0
2 NAME Ori A MoC 05 38 -07.1           ~ 2675 0
3 LDN 1641 MoC 05 39.0 -07 00           ~ 426 0
4 NAME Ori B MoC 05 41 43.0 -01 54 44           ~ 1164 0
5 NAME Nessie Nebula DNe 16 43 -46.7           ~ 21 0
6 [CCE98b] 011.11-0.12 Cld 18 10.5 -19 23           ~ 85 1
7 NAME Sct-Cen PoG ~ ~           ~ 135 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...616A..78M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact