2018A&A...616A.144D


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.04CEST00:45:15

2018A&A...616A.144D - Astronomy and Astrophysics, volume 616A, 144-144 (2018/8-1)

Spatially resolved spectroscopy across stellar surfaces. III. Photospheric Fe I lines across HD 189733A (K1 V).

DRAVINS D., GUSTAVSSON M. and LUDWIG H.-G.

Abstract (from CDS):


Context. Spectroscopy across spatially resolved stellar surfaces reveals spectral line profiles free from rotational broadening, whose gradual changes from disk center toward the stellar limb reflect an atmospheric fine structure that is possible to model by 3D hydrodynamics.
Aims. Previous studies of photospheric spectral lines across stellar disks exist for the Sun and HD 209458 (G0 V) and are now extended to the planet-hosting HD 189733A to sample a cooler K-type star and explore the future potential of the method.
Methods. During exoplanet transit, stellar surface portions successively become hidden and differential spectroscopy between various transit phases uncovers spectra of small surface segments temporarily hidden behind the planet. The method was elaborated in Paper I (Dravins et al., 2017A&A...605A..90D), in which observable signatures were predicted quantitatively from hydrodynamic simulations.
Results. From observations of HD 189733A with the ESO HARPS spectrometer at λ/Δλ∼115000, profiles for stronger and weaker FeI lines are retrieved at several center-to-limb positions, reaching adequate S/N after averaging over numerous similar lines.
Conclusions. Retrieved line profile widths and depths are compared to synthetic ones from models with parameters bracketing those of the target star and are found to be consistent with 3D simulations. Center-to-limb changes strongly depend on the surface granulation structure and much greater line-width variation is predicted in hotter F-type stars with vigorous granulation than in cooler K-types. Such parameters, obtained from fits to full line profiles, are realistic to retrieve for brighter planet-hosting stars, while their hydrodynamic modeling offers previously unexplored diagnostics for stellar atmospheric fine structure and 3D line formation. Precise modeling may be required in searches for Earth-analog exoplanets around K-type stars, whose more tranquil surface granulation and lower ensuing microvariability may enable such detections.

Abstract Copyright: © ESO 2018

Journal keyword(s): stars: atmospheres - stars: solar-type - techniques: spectroscopic - stars: individual: HD 189733A - line: profiles

Simbad objects: 6

goto Full paper

goto View the reference in ADS

Number of rows : 6

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 * alf CMi SB* 07 39 18.11950 +05 13 29.9552 0.82 0.79 0.37 -0.05 -0.28 F5IV-V+DQZ 1757 0
2 * alf Boo RG* 14 15 39.67207 +19 10 56.6730 2.46 1.18 -0.05 -1.03 -1.68 K1.5IIIFe-0.5 2131 0
3 HD 185603 * 19 38 38.7352870670 +31 13 09.215701765   7.67 7.58     A0 16 0
4 HD 189733 BY* 20 00 43.7130382888 +22 42 39.071811263 9.241 8.578 7.648 7.126 6.68 K2V 720 1
5 HD 189733b Pl 20 00 43.7130382888 +22 42 39.071811263           ~ 1082 1
6 HD 209458 V* 22 03 10.7729598762 +18 53 03.548248479   8.21 7.63     F9V 994 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...616A.144D and select 'bookmark this link' or equivalent in the popup menu


2020.07.04-00:45:15

© Université de Strasbourg/CNRS

    • Contact