C.D.S. - SIMBAD4 rel 1.7 - 2020.07.11CEST20:36:34

2018A&A...616A.160V - Astronomy and Astrophysics, volume 616A, 160-160 (2018/8-1)

Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars.


Abstract (from CDS):

Context. Both dynamo theory and observations of stellar large-scale magnetic fields suggest a change from nearly axisymmetric configurations at solar rotation rates to nonaxisymmetric configurations for rapid rotation.
Aims. We seek to understand this transition using numerical simulations.
Methods. We use three-dimensional simulations of turbulent magnetohydrodynamic convection in spherical shell wedges and considered rotation rates between 1 and 31 times the solar value.
Results. We find a transition from axi- to nonaxisymmetric solutions at around 1.8 times the solar rotation rate. This transition coincides with a change in the rotation profile from antisolar- to solar-like differential rotation with a faster equator and slow poles. In the solar-like rotation regime, the field configuration consists of an axisymmetric oscillatory field accompanied by an m=1 azimuthal mode (two active longitudes), which also shows temporal variability. At slow (rapid) rotation, the axisymmetric (nonaxisymmetric) mode dominates. The axisymmetric mode produces latitudinal dynamo waves with polarity reversals, while the nonaxisymmetric mode often exhibits a slow drift in the rotating reference frame and the strength of the active longitudes changes cyclically over time between the different hemispheres. In the majority of cases we find retrograde waves, while prograde waves are more often found from observations. Most of the obtained dynamo solutions exhibit cyclic variability either caused by latitudinal or azimuthal dynamo waves. In an activity-period diagram, the cycle lengths normalized by the rotation period form two different populations as a function of rotation rate or magnetic activity level. The slowly rotating axisymmetric population lies close to what in observations is called the inactive branch, where the stars are believed to have solar-like differential rotation, while the rapidly rotating models are close to the superactive branch with a declining cycle to rotation frequency ratio and an increasing rotation rate.
Conclusions. We can successfully reproduce the transition from axi- to nonaxisymmetric dynamo solutions for high rotation rates, but high-resolution simulations are required to limit the effect of rotational quenching of convection at rotation rates above 20 times the solar value.

Abstract Copyright: © ESO 2018

Journal keyword(s): convection - Sun: activity - magnetohydrodynamics (MHD) - dynamo - turbulence - Sun: rotation

Simbad objects: 2

goto Full paper

goto View the reference in ADS

Number of rows : 2

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 V* EI Eri RS* 04 09 40.8929265498 -07 53 34.177328732   7.71 7.04     G3V 267 0
2 * sig Gem RS* 07 43 18.7269793 +28 53 00.642191 6.38 5.41 4.29 3.37 2.79 K1IIIe 444 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...616A.160V and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact