2018A&A...617A.103C


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.04CEST15:14:40

2018A&A...617A.103C - Astronomy and Astrophysics, volume 617A, 103-103 (2018/9-1)

Molecular gas in two companion cluster galaxies at z = 1.2.

CASTIGNANI G., COMBES F., SALOME P., ANDREON S., PANNELLA M., HEYWOOD I., TRINCHIERI G., CICONE C., DAVIES L.J.M., OWEN F.N. and RAICHOOR A.

Abstract (from CDS):


Context. Probing both star formation history and evolution of distant cluster galaxies is essential to evaluate the effect of dense environment on shaping the galaxy properties we observe today.
Aims. We investigate the effect of cluster environment on the processing of the molecular gas in distant cluster galaxies. We study the molecular gas properties of two star-forming galaxies separated by 6kpc in the projected space and belonging to a galaxy cluster selected from the Irac Shallow Cluster Survey, at a redshift z=1.2, that is, ∼2Gyr after the cosmic star formation density peak. This work describes the first CO detection from 1<z<1.4 star-forming cluster galaxies with no clear reported evidence of active galactic nuclei.
Methods. We exploit observations taken with the NOEMA interferometer at ∼3mm to detect CO(2-1) line emission from the two selected galaxies, unresolved by our observations.
Results. Based on the CO(2-1) spectrum, we estimate a total molecular gas mass M(H2)=(2.2+0.50.4)x1010M, where fully excited gas is assumed, and a dust mass Mdust<4.2x108M for the two blended sources. The two galaxies have similar stellar masses and Hα-based star formation rates (SFRs) found in previous work, as well as a large relative velocity of ∼400km/s estimated from the CO(2-1) line width. These findings tend to privilege a scenario where both sources contribute to the observed CO(2-1). Using the archival Spitzer MIPS flux at 24µm we estimate an SFR(24µm)=(28+12–8)M/yr for each of the two galaxies. Assuming that the two sources contribute equally to the observed CO(2-1), our analysis yields a depletion timescale of τdep=(3.9+1.4–1.8)x108yr, and a molecular gas to stellar mass ratio of 0.17±0.13 for each of two sources, separately. We also provide a new, more precise measurement of an unknown weighted mean of the redshifts of the two galaxies, z=1.163±0.001.
Conclusions. Our results are in overall agreement with those of other distant cluster galaxies and with model predictions for main sequence (MS) field galaxies at similar redshifts. The two target galaxies have molecular gas mass and depletion times that are marginally compatible with, but smaller than those of MS field galaxies, suggesting that the molecular gas has not been sufficiently refueled. We speculate that the cluster environment might have played a role in preventing the refueling via environmental mechanisms such as galaxy harassment, strangulation, ram-pressure, or tidal stripping. Higher-resolution and higher-frequency observations will enable us to spatially resolve the two sources and possibly distinguish between different gas processing mechanisms.

Abstract Copyright: © ESO 2018

Journal keyword(s): galaxies: clusters: individual: ISCS J1426.5+3339 - galaxies: clusters: general - galaxies: star formation - molecular data

Errata: erratum vol. 620, art. C4 (2018)

CDS comments: Paragraph 4.7 J0225-3680/3624 and J0225-396/424 not in SIMBAD.

Simbad objects: 6

goto Full paper

goto View the reference in ADS

Number of rows : 6

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 [ZSB2013] J142626.1+333827 G 14 26 26.09 +33 38 27.6           ~ 2 0
2 [ZSB2013] J142626.1+333826 G 14 26 26.12 +33 38 26.8           ~ 3 0
3 ISCS J1426.5+3339 ClG 14 26 30.42 +33 39 33.2           ~ 10 0
4 ClG J1449+0856 ClG 14 49.0 +08 56           ~ 41 0
5 NVSS J175705+651953 rG 17 57 05.5 +65 19 54           ~ 28 2
6 ClG J2215-1738 ClG 22 15 58.5 -17 38 03           ~ 91 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...617A.103C and select 'bookmark this link' or equivalent in the popup menu


2020.07.04-15:14:40

© Université de Strasbourg/CNRS

    • Contact