C.D.S. - SIMBAD4 rel 1.7 - 2020.07.04CEST01:59:34

2018A&A...617A.144H - Astronomy and Astrophysics, volume 617A, 144-144 (2018/9-1)

Medium-resolution integral-field spectroscopy for high-contrast exoplanet imaging. Molecule maps of the βPictoris system with SINFONI.


Abstract (from CDS):

Context. Angular differential imaging (ADI) and spectral differential imaging (SDI) are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations from their host stars.
Aims. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R ∼ 5000) integral field spectrographs (IFS) can be used to directly detect the absorption of molecular species in the spectra of planets and substellar companions when these are not present in the spectrum of the star.
Methods. We analysed archival data of the β Pictoris system taken with the SINFONI integral field spectrograph located at ESO's Very Large Telescope, originally taken to image β Pictoris b using ADI techniques. At each spatial position in the field, a scaled instance of the stellar spectrum is subtracted from the data after which the residuals are cross-correlated with model spectra. The cross-correlation co-adds the individual absorption lines of the planet emission spectrum constructively, while this is not the case for (residual) telluric and stellar features.
Results. Cross-correlation with CO and H2O models results in significant detections of β Pictoris b with signal-to-noise ratios (S/Ns) of 13.7 and 16.4 respectively. Correlation with a T=1700K BT-Settl model provides a detection with an S/N of 22.8. This in contrast to application of ADI, which barely reveals the planet. While the adaptive optics system only achieved modest Strehl ratios of 19-27% leading to a raw contrast of 1:240 at the planet position, cross-correlation achieves a 3σ contrast limit of 2.7x10–5 in this 2.5hr data set, a factor ∼40 below the raw noise level at an angular distance of 0.36'' from the star.
Conclusions. Adaptive-optics assisted, medium-resolution IFS, such as SINFONI on the VLT and OSIRIS on the Keck Telescope, can be used for high-contrast imaging utilizing cross-correlation techniques for planets that are close to their star and embedded in speckle noise. We refer to this method as molecule mapping, and advocate its application to observations with future medium resolution instruments, in particular ERIS on the VLT, HARMONI on the ELT and NIRSpec, and MIRI on the JWST.

Abstract Copyright: © ESO 2018

Journal keyword(s): infrared: planetary systems - techniques: imaging spectroscopy - planets and satellites: atmospheres - planets and satellites: detection - planets and satellites: gaseous planets

Simbad objects: 6

goto Full paper

goto View the reference in ADS

Number of rows : 6

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 * bet Pic b Pl 05 47 17.0876901 -51 03 59.441135           ~ 338 1
2 * bet Pic PM* 05 47 17.0876901 -51 03 59.441135 4.13 4.03 3.86 3.74 3.58 A6V 1653 1
3 HD 189733 BY* 20 00 43.7130382888 +22 42 39.071811263 9.241 8.578 7.648 7.126 6.68 K2V 720 1
4 HD 218396 El* 23 07 28.7156905667 +21 08 03.302133882   6.21 5.953     F0+VkA5mA5 896 0
5 HD 218396b Pl 23 07 28.7156905667 +21 08 03.302133882           ~ 199 1
6 HD 218396c Pl 23 07 28.7156905667 +21 08 03.302133882           ~ 187 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...617A.144H and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact