2018A&A...619A...6O


C.D.S. - SIMBAD4 rel 1.7 - 2019.11.14CET18:47:27

2018A&A...619A...6O - Astronomy and Astrophysics, volume 619A, 6-6 (2018/11-1)

Estimating activity cycles with probabilistic methods. II. The Mount Wilson Ca H&K data.

OLSPERT N., LEHTINEN J.J., KAPYLA M.J., PELT J. and GRIGORIEVSKIY A.

Abstract (from CDS):


Context. Debate over the existence of branches in the stellar activity-rotation diagrams continues. Application of modern time series analysis tools to study the mean cycle periods in chromospheric activity index is lacking.
Aims. We develop such models, based on Gaussian processes (GPs), for one-dimensional time series and apply it to the extended Mount Wilson Ca H&K sample. Our main aim is to study how the previously commonly used assumption of strict harmonicity of the stellar cycles as well as handling of the linear trends affect the results.
Methods. We introduce three methods of different complexity, starting with Bayesian harmonic regression model, followed by GP regression models with periodic and quasi-periodic covariance functions. We also incorporate a linear trend as one of the components. We construct rotation to magnetic cycle period ratio-activity (RCRA) diagrams and apply a Gaussian mixture model to learn the optimal number of clusters explaining the data.
Results. We confirm the existence of two populations in the RCRA diagram; this finding is robust with all three methods used. We find only one significant trend in the inactive population, namely that the cycle periods get shorter with increasing rotation, leading to a positive slope in the RCRA diagram. This is in contrast with earlier studies, that postulate the existence of trends of different types in both of the populations. Our data is consistent with only two activity branches (inactive, transitional) instead of three (inactive, active, transitional) such that the active branch merges together with the transitional one. The retrieved stellar cycles are uniformly distributed over the RHK' activity index, indicating that the operation of stellar large-scale dynamos carries smoothly over the Vaughan-Preston gap. At around the solar activity index, however, indications of a disruption in the cyclic dynamo action are seen.
Conclusions. Our study shows that stellar cycle estimates from time series the length of which is short in comparison to the searched cycle itself depend significantly on the model applied. Such model-dependent aspects include the improper treatment of linear trends, while the assumption of strict harmonicity can result in the appearance of double cyclicities that seem more likely to be explained by the quasi-periodicity of the cycles. In the case of quasi-periodic GP models, which we regard the most physically motivated ones, only 15 stars were found with statistically significant cycles against red noise model. The periodicities found have to, therefore, be regarded as suggestive.

Abstract Copyright: © ESO 2018

Journal keyword(s): stars: activity - methods: statistical

Simbad objects: 78

goto Full paper

goto View the reference in ADS

Number of rows : 78

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 * 85 Peg SB* 00 02 10.3411392575 +27 04 54.476788744 6.47 6.42 5.75 5.16 4.73 G5VbFe-2 517 0
2 * 9 Cet BY* 00 22 51.7883318927 -12 12 33.972374893 7.29 7.05 6.39     G2.5V 446 0
3 HD 2454 PM* 00 28 20.0441170647 +10 11 23.308682092   6.47   5.8   F5VSr 160 0
4 * 14 Cet PM* 00 35 32.8335385951 -00 30 20.198144650   6.368 5.936     F5V 115 0
5 * 54 Psc PM* 00 39 21.8055114029 +21 15 01.716052732 7.29 6.71 5.88 5.21 4.82 K0.5V 514 1
6 HD 4628 PM* 00 48 22.9763438736 +05 16 50.209562003 7.22 6.64 5.74 4.99 4.52 K2.5V 437 0
7 * chi And SB* 01 39 20.9882801730 +44 23 10.199584793   5.886 5.008     G8III 76 0
8 * 107 Psc PM* 01 42 29.7634932653 +20 16 06.660242064 6.57 6.08 5.24 4.55 4.12 K1V 492 0
9 HD 10780 BY* 01 47 44.8336250528 +63 51 09.007331430 6.84 6.44 5.63 4.99 4.60 K0V 308 0
10 HD 16160 PM* 02 36 04.9023844802 +06 53 12.431588708   6.81   5.2   K3V 476 1
11 HD 16673 SB* 02 40 12.4221262303 -09 27 10.336039665   6.294 5.790     F8VFe-0.4 214 0
12 * rho Ari PM* 02 56 26.1717266513 +18 01 23.665188613   6.06   5.3   F6V 146 0
13 * kap01 Cet BY* 03 19 21.6963205 +03 22 12.715139 5.71 5.52 4.85 4.27 3.91 G5V 811 0
14 * eps Eri BY* 03 32 55.8449634 -09 27 29.731165 5.19 4.61 3.73 3.00 2.54 K2V 1659 1
15 * omi02 Eri Fl* 04 15 16.3197260 -07 39 10.338087 5.69 5.25 4.43 3.74 3.29 K0V 732 0
16 HD 26913 BY* 04 15 25.7871510436 +06 11 58.749263209 7.790 7.580 6.920 6.554 6.195 G8V 194 0
17 HD 26923 BY* 04 15 28.8004956278 +06 11 12.699896698 6.910 6.860   5.9   G0IV 180 0
18 HD 27022 * 04 20 40.3249776693 +65 08 25.591905111 6.55 6.08 5.27 4.63 4.20 G4III 141 0
19 * 3 Cam Ce* 04 39 54.6799466629 +53 04 46.317734033   6.158 5.073     K0III 91 1
20 * 63 Eri SB* 04 59 50.4609687587 -10 15 47.820334404   6.180 5.390     G4IV-V+DA 95 1
21 HD 32147 PM* 05 00 48.9991346145 -05 45 13.220341956 8.27 7.27 6.21 5.36 4.87 K3+V 406 1
22 HD 33608 PM* 05 11 19.1762022726 -02 29 26.814981908   6.346 5.892     F5V 117 0
23 HD 37394 BY* 05 41 20.3357283721 +53 28 51.810629854 7.58 7.07 6.23 5.54 5.11 K1 289 0
24 * 57 Gem PM* 07 23 28.5112255926 +25 03 01.913058212   5.933 5.022     G8III 87 0
25 * ups Gem PM* 07 35 55.3506173748 +26 53 44.711452380 7.54 5.60 4.06 2.82 1.91 M0III 191 0
26 * 19 Pup ** 08 11 16.3058502 -12 55 37.195175 6.44 5.68 4.72 3.99 3.51 G8.5IIIb 74 0
27 HD 75332 PM* 08 50 32.2225492041 +33 17 06.200101841   6.738 6.210     F7Vs 139 0
28 HD 76151 PM* 08 54 17.9469808897 -05 26 04.046487788 6.89 6.67 6.00     G2V 462 0
29 * 61 Cnc PM* 08 57 58.6675878979 +30 14 01.771959638   6.692 6.239     F4V 65 1
30 HD 78366 PM* 09 08 51.0705427688 +33 52 55.988119240   6.53   5.6   G0IV-V 212 0
31 HD 81809 SB* 09 27 46.77993 -06 04 16.2822   6.02 5.40     G1.5IV-V 267 0
32 V* LQ Hya BY* 09 32 25.5684079124 -11 11 04.687410738 9.316 8.761 7.891 7.288 6.815 K1Vp 394 0
33 HD 82443 BY* 09 32 43.7594363452 +26 59 18.708212270   7.78   6.6   G9V(k) 211 1
34 * 10 LMi RS* 09 34 13.3814384371 +36 23 51.216307794   5.47 4.60     G7.5IIIb 139 0
35 * 11 LMi RS* 09 35 39.5018053382 +35 48 36.484070234 6.560 6.110 5.340 4.79 4.42 G8Va 341 0
36 * ups01 Hya * 09 51 28.6938376 -14 50 47.771030 5.68 5.03 4.11 3.42 2.95 G7III 143 0
37 HD 88373 * 10 11 16.7876347101 -09 24 07.144903372   9.18 8.67     F5V 7 0
38 HD 88737 PM* 10 14 29.7522465320 +21 10 04.975693602       5.7   F9V 116 0
39 * 40 Leo dS* 10 19 44.1668778 +19 28 15.294314   5.24   4.5   F6IV-V 242 0
40 * 88 Leo ** 11 31 44.9446108040 +14 21 52.213131158   6.77   5.9   F9.5V 169 0
41 * 61 UMa PM* 11 41 03.0159358291 +34 12 05.882438337 6.31 6.08 5.34 4.73 4.38 G8V 561 0
42 HD 103095 PM* 11 52 58.7683801554 +37 43 07.240082865 7.38 7.20 6.45 5.80 5.35 K1V_Fe-1.5 734 1
43 HD 111456 ** 12 48 39.4470003426 +60 19 11.037876361   6.299 5.831     F6V 188 1
44 * bet Com PM* 13 11 52.3937856 +27 52 41.453553 4.92 4.84 4.25 3.77 3.47 F9.5V 838 0
45 HD 115043 PM* 13 13 37.0081498408 +56 42 29.762950141   7.423 6.813     G1Va 231 0
46 * e Vir PM* 13 16 46.5161591991 +09 25 26.967205938   5.81   4.8   G0V 495 1
47 LHS 2713 PM* 13 16 51.0517063595 +17 01 01.840304856   7.69 6.66     K2V 249 0
48 * tau Boo ** 13 47 15.74340 +17 27 24.8552 5.02 4.98 4.49 4.09 3.85 F7IV-V 863 1
49 * alf Boo RG* 14 15 39.67207 +19 10 56.6730 2.46 1.18 -0.05 -1.03 -1.68 K1.5IIIFe-0.5 2096 0
50 HD 126053 PM* 14 23 15.2847534665 +01 14 29.641784590 6.98 6.90 6.27 5.71 5.39 G1.5V 354 0
51 * ksi Boo A PM* 14 51 23.3876853015 +19 06 01.641924918   5.40 4.675     G7Ve 492 0
52 * 18 Sco PM* 16 15 37.2703721200 -08 22 09.981989277   6.15 5.50     G2Va 470 0
53 * 12 Oph BY* 16 36 21.4492997704 -02 19 28.512485729 7.00 6.55 5.77 5.13 4.74 K1V 441 0
54 HD 152391 BY* 16 52 58.8025427362 -00 01 35.116299669   7.40 6.64     G8.5Vk: 330 0
55 V* V2213 Oph BY* 17 05 16.8186294192 +00 42 09.217571716   6.59   5.6   F8.5IV-V 314 0
56 * 36 Oph A PM* 17 15 20.7837627960 -26 36 06.120125290   5.93 5.08     K2V 242 0
57 * 36 Oph B PM* 17 15 20.9846233161 -26 36 10.159381821   5.88 5.03     K1V 223 0
58 V* V2215 Oph RS* 17 16 13.3627374963 -26 32 46.133091527   7.50 6.34   4.8 K5V 275 0
59 HD 157856 PM* 17 25 57.8752864191 -01 39 06.408239689   6.872 6.440     F5V 89 0
60 HD 160346 SB* 17 39 16.9163262 +03 33 18.875718   7.48   5.9   K3-V 267 0
61 * 84 Her PM* 17 43 21.5646072179 +24 19 40.157353689   6.394 5.729     G2IIIb 131 0
62 * 70 Oph A PM* 18 05 27.370543 +02 29 59.31669       3.6   K0V 200 0
63 * 70 Oph B PM* 18 05 27.4622283249 +02 29 56.223591080   7.26 6.07 5.6   K4V 102 0
64 HD 166620 PM* 18 09 37.4162810870 +38 27 27.995921559 7.86 7.27 6.40 5.63 5.14 K2V 382 0
65 HD 176051 SB* 18 57 01.60985 +32 54 04.5723 5.85 5.82   4.9   F9V+K1V 235 1
66 HD 182101 PM* 19 22 48.3509752008 +09 54 47.339080185   6.789 6.346     F6V 111 0
67 * sig Dra PM* 19 32 21.5902990 +69 39 40.234737 5.860 5.460 4.680 4.04 3.63 K0V 572 0
68 * omi Aql PM* 19 51 01.6437560393 +10 24 56.595177367   5.66   4.8   F8V 414 0
69 * bet Aql PM* 19 55 18.7925630 +06 24 24.342501 5.040 4.560 3.710 3.05 2.56 G8IV 509 0
70 HD 190007 BY* 20 02 47.0455912903 +03 19 34.264805769   8.60   6.8   K5V 196 0
71 * 15 Sge PM* 20 04 06.2209062328 +17 04 12.677429047   6.41   5.4   G0V 331 0
72 HD 194012 PM* 20 22 52.3693290617 +14 33 03.946961940   6.635 6.152     F7V 100 1
73 * 61 Cyg A BY* 21 06 53.9396100677 +38 44 57.897024357 7.50 6.39 5.21 4.19 3.54 K5V 929 0
74 * 61 Cyg B Fl* 21 06 55.2640651855 +38 44 31.362140913 8.63 7.40 6.03 4.86 3.55 K7V 658 1
75 HD 206860 BY* 21 44 31.3299733695 +14 46 18.982331039       6.16   G0V+ 440 1
76 * pi. Cep SB* 23 07 53.85377 +75 23 14.9951 5.67 5.21 4.41     G2III 169 0
77 * 94 Aqr B PM* 23 19 06.5608518922 -13 27 18.903718042         8.37 K2 67 1
78 * 94 Aqr SB* 23 19 06.7256972451 -13 27 31.614580771   5.95 5.18     G8.5IV 177 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...619A...6O and select 'bookmark this link' or equivalent in the popup menu


2019.11.14-18:47:27

© Université de Strasbourg/CNRS

    • Contact