C.D.S. - SIMBAD4 rel 1.7 - 2020.02.25CET23:10:00

2018A&A...619A.149L - Astronomy and Astrophysics, volume 619A, 149-149 (2018/11-1)

Constraining the geometry of the nuclear wind in PDS 456 using a novel emission model.


Abstract (from CDS):

Context. Outflows from active galactic nuclei (AGN) are often invoked to explain the co-evolution of AGN and their host galaxies, and the scaling relations between the central black hole mass and the bulge velocity dispersion. Nuclear winds are often seen in the X-ray spectra through Fe K shell transitions and some of them are called ultra fast outflows (UFOs) due to their high velocities, up to some fractions of the speed of light. If they were able to transfer some percentage of the AGN luminosity to the host galaxy, this might be enough to trigger an efficient feedback mechanism.
Aims. We aim to establish new constraints on the covering fraction and on the kinematic properties of the UFO in the powerful (Lbol∼1047erg/s) quasar PDS 456, an established Rosetta stone for studying AGN feedback from disk winds. This will allow us to estimate the mass outflow rate and the energy transfer rate of the wind, which are key quantities to understand the potential impact on the host galaxy.
Methods. We analyze two sets of simultaneous XMM-Newton and NuSTAR observations taken in September 2013 and reported in Nardini et al. (2015Sci...347..860N) as having similar broadband spectral properties. We fit the Fe K features with a P-Cygni profile between 5 and 14keV, using a novel Monte Carlo model for the WINd Emission (WINE).
Results. We find an outflow velocity ranging from 0.17 to 0.28c, with a mean value of 0.23c. We obtain an opening angle of the wind of 71–8+13deg and a covering fraction of 0.7–0.3+0.2, suggesting a wide-angle outflow. We check the reliability of the WINE model by performing extensive simulations of joint XMM-Newton and NuSTAR observations. Furthermore, we test the accuracy of the WINE model in recovering the geometrical properties of UFOs by simulating observations with the forthcoming Advanced Telescope for High-Energy Astrophysics (ATHENA) in the X-ray band.

Abstract Copyright: © ESO 2018

Journal keyword(s): quasars: supermassive black holes - X-rays: galaxies - line: profiles - techniques: spectroscopic - quasars: emission lines - galaxies: active

Simbad objects: 2

goto Full paper

goto View the reference in ADS

Number of rows : 2

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 4U 0708-49 Sy1 07 08 41.4887418009 -49 33 06.308287663   16.02 15.7 12.7   ~ 414 0
2 QSO B1725-142 QSO 17 28 19.7893541722 -14 15 55.855574749   14.69 14.03 13.7   ~ 218 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...619A.149L and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact