2019A&A...623A.179K -
Astronomy and Astrophysics, volume 623A, 179-179 (2019/3-1)
Gas flow around a planet embedded in a protoplanetary disc. Dependence on planetary mass.
KUWAHARA A., KUROKAWA H. and IDA S.
Abstract (from CDS):
Context. The ubiquity of short-period super-Earths remains a mystery in planet formation, as these planets are expected to become gas giants via runaway gas accretion within the lifetime of a protoplanetary disc. The cores of super-Earths should form in the late stage of disc evolution to avoid runaway gas accretion. Aims. The three-dimensional structure of the gas flow around a planet is thought to influence the accretion of both gas and solid materials. In particular, the outflow in the midplane region may prevent the accretion of solid materials and delay the formation of the super-Earth cores. However, it is not yet understood how the nature of the flow field and outflow speed change as a function of the planetary mass. In this study, we investigate the dependence of gas flow around a planet embedded in a protoplanetary disc on the planetary mass. Methods. Assuming an isothermal, inviscid gas disc, we perform three-dimensional hydrodynamical simulations on the spherical polar grid, which has a planet located at its centre. Results. We find that gas enters the Bondi or Hill sphere at high latitudes and exits through the midplane region of the disc regardless of the assumed dimensionless planetary mass m = RBondi/H, where RBondi and H are the Bondi radius of the planet and disc scale height, respectively. The altitude from where gas predominantly enters the envelope varies with planetary mass. The outflow speed can be expressed as |uout|=sqrt(3/2)mcs (RBondi≤RHill) or |uout|=sqrt(3/2)(m/3)1/3cs (RBondi≥RHill), where cs is the isothermal sound speed and RHill is the Hill radius. The outflow around a planet may reduce the accretion of dust and pebbles onto the planet when m≥sqrt(St), where St is the Stokes number. Conclusions. Our results suggest that the flow around proto-cores of super-Earths may delay their growth and consequently help them to avoid runaway gas accretion within the lifetime of the gas disc.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Other object types:
Pl?
(),
Pl
(),
*
(GJ)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
References (566 between 1850 and 2021) (Total 566)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2019A&A...623A.179K and select 'bookmark this link' or equivalent in the popup menu