C.D.S. - SIMBAD4 rel 1.7 - 2021.01.19CET16:57:33

2019A&A...624A..58V - Astronomy and Astrophysics, volume 624A, 58-58 (2019/4-1)

Reduced chemical scheme for modelling warm to hot hydrogen-dominated atmospheres.


Abstract (from CDS):

Context. Three-dimensional models that account for chemistry are useful tools to predict the chemical composition of (exo)planet and brown dwarf atmospheres and interpret observations of future telescopes, such as James Webb Space Telescope (JWST) and Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL). Recent Juno observations of the NH3 tropospheric distribution in Jupiter also indicate that 3D chemical modelling may be necessary to constrain the deep composition of the giant planets of the solar system. However, due to the high computational cost of chemistry calculations, 3D chemical modelling has so far been limited.
Aims. Our goal is to develop a reduced chemical scheme from the full chemical scheme of Venot et al. (2012A&A...546A..43V) able to reproduce accurately the vertical profiles of the observable species (H2O, CH4, CO, CO2, NH3, and HCN). This reduced scheme should have a size compatible with three-dimensional models and be usable across a large parameter space (e.g. temperature, pressure, elemental abundance). The absence of C2H2 from our reduced chemical scheme prevents its use to study hot C-rich atmospheres.
Methods. We used a mechanism-processing utility program designed for use with Chemkin-Pro to reduce a full detailed mechanism. The ANSYS(c) Chemkin-Pro Reaction Workbench allows the reduction of a reaction mechanism for a given list of target species and a specified level of accuracy. We took a warm giant exoplanet with solar abundances, GJ 436b, as a template to perform the scheme reduction. To assess the validity of our reduced scheme, we took the uncertainties on the reaction rates into account in Monte Carlo runs with the full scheme, and compared the resulting vertical profiles with the reduced scheme. We explored the range of validity of the reduced scheme even further by applying our new reduced scheme to GJ 436b's atmosphere with different elemental abundances, to three other exoplanet atmospheres (GJ 1214b, HD 209458b, HD 189733b), a brown dwarf atmosphere (SD 1110), and to the troposphere of two giant planets of the solar system (Uranus and Neptune).
Results. For all cases except one, the abundances predicted by the reduced scheme remain within the error bars of the model with the full scheme. Expectedly, we found important differences that cannot be neglected only for the C-rich hot atmosphere. The reduced chemical scheme allows more rapid runs than the full scheme from which it is derived (∼30x faster).
Conclusions. We have developed a reduced scheme containing 30 species and 181 reversible reactions. This scheme has a large range of validity and can be used to study all kinds of warm atmospheres, except hot C-rich ones that contain a high amount of C2H2. It can be used in 1D models, for fast computations, but also in 3D models for hot giant (exo)planet and brown dwarf atmospheres.

Abstract Copyright: © O. Venot et al. 2019

Journal keyword(s): astrochemistry - planets and satellites: atmospheres - planets and satellites: composition - methods: numerical - planets and satellites: gaseous planets - brown dwarfs

Simbad objects: 8

goto Full paper

goto View the reference in ADS

Number of rows : 8

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 HD 10069b Pl 01 37 25.0335097438 -45 40 40.376513381           ~ 239 1
2 WASP-12b Pl 06 30 32.7966788910 +29 40 20.266334158           G0 582 1
3 WASP-43b Pl 10 19 38.0089444408 -09 48 22.603103969           ~ 223 1
4 Ross 905b Pl 11 42 11.0933874353 +26 42 23.658083337           ~ 627 1
5 WASP-103b Pl 16 37 15.5753608801 +07 11 00.119024745           ~ 102 1
6 NAME G 139-21b Pl 17 15 18.9337265994 +04 57 50.064695682           ~ 561 1
7 HD 189733b Pl 20 00 43.7130382888 +22 42 39.071811263           ~ 1139 1
8 HD 209458b Pl 22 03 10.7729598762 +18 53 03.548248479           ~ 1535 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2019A&A...624A..58V and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact