2019A&A...629A..88P


Query : 2019A&A...629A..88P

2019A&A...629A..88P - Astronomy and Astrophysics, volume 629A, 88-88 (2019/9-1)

Thermal evolution and quiescent emission of transiently accreting neutron stars.

POTEKHIN A.Y., CHUGUNOV A.I. and CHABRIER G.

Abstract (from CDS):


Aims. We study the long-term thermal evolution of neutron stars in soft X-ray transients (SXTs), taking the deep crustal heating into account consistently with the changes of the composition of the crust. We collect observational estimates of average accretion rates and thermal luminosities of such neutron stars and compare the theory with observations.
Methods. We performed simulations of thermal evolution of accreting neutron stars, considering the gradual replacement of the original nonaccreted crust by the reprocessed accreted matter, the neutrino and photon energy losses, and the deep crustal heating due to nuclear reactions in the accreted crust. We also tested and compared results for different modern theoretical models. We updated a compilation of the observational estimates of the thermal luminosities in quiescence and average accretion rates in the SXTs and compared the observational estimates with the theoretical results.
Results. The long-term thermal evolution of transiently accreting neutron stars is nonmonotonic. The quasi-equilibrium temperature in quiescence reaches a minimum and then increases toward the final steady state. The quasi-equilibrium thermal luminosity of a neutron star in an SXT can be substantially lower at the minimum than in the final state. This enlarges the range of possibilities for theoretical interpretation of observations of such neutron stars. The updates of the theory and observations leave the previous conclusions unchanged, namely that the direct Urca process operates in relatively cold neutron stars and that an accreted heat-blanketing envelope is likely present in relatively hot neutron stars in the SXTs in quiescence. The results of the comparison of theory with observations favor suppression of the triplet pairing type of nucleon superfluidity in the neutron-star matter.

Abstract Copyright: © A. Y. Potekhin et al. 2019

Journal keyword(s): stars: neutron - X-rays: binaries

Simbad objects: 42

goto Full paper

goto View the references in ADS

Number of rows : 42
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 V* V1037 Cas LXB 00 29 03.06 +59 34 19.0           ~ 259 1
2 MAXI J0556-332 LXB 05 56 46.32 -33 10 28.2           ~ 83 0
3 V* UY Vol LXB 07 48 33.71 -67 45 07.7 16.10 17.00 16.9 16.7 17.05 ~ 610 0
4 V* BW Ant LXB 09 29 20.19 -31 23 03.2   18.50 18.63     ~ 182 0
5 V* V822 Cen LXB 14 58 21.9347842080 -31 40 07.515432768 11.95 12.85 12.8     K3-K7V 537 0
6 V* QX Nor LXB 16 12 43.0 -52 25 23           ~ 894 1
7 [KRL2007b] 214 LXB 17 00 58.46 -46 11 08.6           ~ 239 0
8 MXB 1658-298 LXB 17 02 06.54 -29 56 44.1 18.35 18.75 18.3     ~ 351 0
9 RX J1709.5-2639 LXB 17 09 34 -26 39.9           ~ 118 0
10 NGC 6293 GlC 17 10 10.42 -26 34 54.2           ~ 272 0
11 1H 1715-321 LXB 17 18 47.40 -32 10 40.0           ~ 74 0
12 4U 1730-22 LXB 17 33 57.00 -22 02 07.0           ~ 45 0
13 KS 1731-260 LXB 17 34 13.46 -26 05 18.6       22.8 20.9 ~ 412 0
14 1RXS J173546.9-302859 LXB 17 35 46.88 -30 29 00.4           ~ 74 1
15 ESO 455-23 GlC 17 35 47.80 -30 28 11.0           ~ 245 0
16 IGR J17480-2446 LXB 17 48 04.831 -24 46 48.87           ~ 173 0
17 Cl Terzan 5 Cl* 17 48 05.00 -24 46 48.0           ~ 817 1
18 NAME TER 5 X-1 LXB 17 48 05.225 -24 46 47.66           ~ 213 1
19 MAXI J1747-249 LXB 17 48 05.3 -24 46 37           ~ 42 0
20 [PLV2002] CX1 LXB 17 48 52.163 -20 21 32.40           ~ 189 1
21 NGC 6440 GlC 17 48 52.67 -20 21 34.5   12.01 10.10     ~ 532 0
22 [HAC2010] NGC 6440 X-2 LXB 17 48 52.76 -20 21 24.0           ~ 70 0
23 SAX J1750.8-2900 LXB 17 50 24.42 -29 02 15.4           ~ 138 0
24 EXO 1747-214 LXB 17 50 24.52 -21 25 19.9           ~ 44 0
25 ESO 455-49 GlC 17 50 46.40 -31 16 31.0           ~ 180 0
26 Granat 1747-312 LXB 17 50 46.862 -31 16 28.86           ~ 115 1
27 [KRL2007b] 291 LXB 17 51 13.49 -30 37 23.4           ~ 242 0
28 SWIFT J1756.9-2508 LXB 17 56 57.35 -25 06 27.8           ~ 102 0
29 1RXS J180408.9-342058 LXB 18 04 08.9 -34 20 58           ~ 55 0
30 2S 1803-245 LXB 18 06 50.72 -24 35 28.6           ~ 73 0
31 [KRL2007b] 304 LXB 18 06 59.8 -29 24 30           ~ 214 0
32 V* V4580 Sgr LXB 18 08 27.54 -36 58 44.3   16.81 16.51     ~ 963 0
33 V* V4722 Sgr LXB 18 10 44.47 -26 09 01.2   21.5     18.449 ~ 90 0
34 V* V5511 Sgr LXB 18 13 39.03 -33 46 22.3   18.61 18.33 18.05   ~ 186 0
35 IGR J18245-2452 LXB 18 24 32.50 -24 52 07.8           ~ 214 0
36 M 28 GlC 18 24 32.89 -24 52 11.4           ~ 750 0
37 2MAXI J1900-248 LXB 19 00 08.65 -24 55 13.7     18.09     ~ 205 0
38 4U 1857+01 LXB 19 08 26.97 +00 10 07.7 20.50 21.00 20.5     ~ 127 0
39 X Aql X-1 LXB 19 11 16.0571313336 +00 35 05.868232692           ~ 1103 1
40 V* LZ Aqr LXB 21 23 14.54 -05 47 52.9 15.90 16.78 16.8     ~ 146 0
41 NGC 7078 2 * 21 29 22.5737158992 +12 05 10.003044660     14.46     ~ 5 0
42 V* V1727 Cyg LXB 21 31 26.2133156448 +47 17 24.512055396 16.75 17.05 16.4     ~ 238 0

To bookmark this query, right click on this link: simbad:objects in 2019A&A...629A..88P and select 'bookmark this link' or equivalent in the popup menu


2023.09.24-13:03:42

© Université de Strasbourg/CNRS

    • Contact