Query : 2019A&A...631A.104B

2019A&A...631A.104B - Astronomy and Astrophysics, volume 631A, 104-104 (2019/11-1)

Peering at the outflow mechanisms in the transitional pulsar PSR J1023+0038: simultaneous VLT, XMM-Newton, and Swift high-time resolution observations.


Abstract (from CDS):

We report on a simultaneous near-infrared, optical, and X-ray campaign performed in 2017 with the XMM-Newton and Swift satellites and the HAWK-I instrument mounted on the Very Large Telescope (VLT) on the transitional millisecond pulsar PSR J1023+0038. Near-infrared observations were performed in fast-photometric mode (0.5 s exposure time) in order to detect any fast variation of the flux and correlate this with the optical and X-ray light curves. The optical light curve shows the typical sinusoidal modulation at the system orbital period (4.75 h). No significant flaring or flickering is found in the optical, nor any signs of transitions between active and passive states. On the contrary, the near-infrared light curve displays a bimodal behaviour, showing strong flares in the first part of the curve, and an almost flat trend in the rest. The X-ray light curves instead show a few low-high mode transitions, but no flaring activity is detected. Interestingly, one of the low-high mode transitions occurs at the same time as the emission of an infrared flare. This can be interpreted in terms of the emission of an outflow or a jet: the infrared flare could be due to the evolving spectrum of the jet, which possesses a break frequency that moves from higher (near-infrared) to lower (radio) frequencies after the launching, which has to occur at the low-high mode transition. We also present the cross-correlation function between the optical and near-infrared curves. The near.infrared curve is bimodal, therefore we divided it into two parts (flaring and quiet). While the cross-correlation function of the quiet part is found to be flat, the function that refers to the flaring part shows a narrow peak at ∼10s, which indicates a delay of the near-infrared emission with respect to the optical. This lag can be interpreted as reprocessing of the optical emission at the light cylinder radius with a stream of matter spiraling around the system due to a phase of radio ejection. This strongly supports a different origin of the infrared flares that are observed for PSR J1023+0038 with respect to the optical and X-ray flaring activity that has been reported in other works on the same source.

Abstract Copyright: © ESO 2019

Journal keyword(s): stars: jets - stars: neutron - X-rays: binaries

VizieR on-line data: <Available at CDS (J/A+A/631/A104): om.dat hawk-i.dat xrt.dat rgs2.dat>

Simbad objects: 5

goto Full paper

goto View the references in ADS

Number of rows : 5
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
1 PSR J1023+0038 LXB 10 23 47.6841824712 +00 38 41.005893516     17.31     GV 380 0
2 V* V821 Ara HXB 17 02 49.3876391280 -48 47 23.087954544 16.20 16.30 15.5     ~ 2026 0
3 PSR J1740-5340 Psr 17 40 44.589 -53 40 40.90   17.43   16.25   ~ 145 2
4 IGR J18245-2452 LXB 18 24 32.50 -24 52 07.8           ~ 216 0
5 V* V404 Cyg HXB 20 24 03.8254458776 +33 52 01.962185735           G9/K0III/V 1247 0

To bookmark this query, right click on this link: simbad:objects in 2019A&A...631A.104B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact