2019A&A...631L...4M


Query : 2019A&A...631L...4M

2019A&A...631L...4M - Astronomy and Astrophysics, volume 631, L4-4 (2019/11-1)

The fate of planetary cores in giant and ice-giant planets.

MAZEVET S., MUSELLA R. and GUYOT F.

Abstract (from CDS):


Context. The Juno probe that currently orbits Jupiter measures its gravitational moments with great accuracy. Preliminary results suggest that the core of the planet may be eroded. While great attention has been paid to the material properties of elements constituting the envelope, little is known about those that constitute the core. This situation clutters our interpretation the Juno data and modeling of giant planets and exoplanets in general.
Aims. We calculate the high-pressure melting temperatures of three potential components of the cores of giant planets, water, iron, and a simple silicate, MgSiO3, to investigate the state of the deep inner core.
Methods. We used ab initio molecular dynamics simulations to calculate the high-pressure melting temperatures of the three potential core components. The planetary adiabats were obtained by solving the hydrostatic equations in a three-layer model adjusted to reproduce the measured gravitational moments. Recently developed ab initio equations of state were used for the envelope and the core.
Results. We find that the cores of the giant and ice-giant planets of the solar system differ because the pressure-temperature conditions encountered in each object correspond to different regions of the phase diagrams. For Jupiter and Saturn, the results are compatible with a diffuse core and mixing of a significant fraction of metallic elements in the envelope, leading to a convective and/or a double-diffusion regime. We also find that their solid cores vary in nature and size throughout the lifetimes of these planets. The solid cores of the two giant planets are not primordial and nucleate and grow as the planets cool. We estimate that the solid core of Jupiter is 3Gyr old and that of Saturn is 1.5Gyr old. The situation is less extreme for Uranus and Neptune, whose cores are only partially melted.
Conclusions. To model Jupiter, the time evolution of the interior structure of the giant planets and exoplanets in general, their luminosity, and the evolution of the tidal effects over their lifetimes, the core should be considered as crystallizing and growing rather than gradually mixing into the envelope due to the solubility of its components.

Abstract Copyright: © S. Mazevet et al. 2019

Journal keyword(s): equation of state - planets and satellites: interiors - planets and satellites: gaseous planets

Simbad objects: 1

goto Full paper

goto View the references in ADS

Number of rows : 1
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 HD 209458b Pl 22 03 10.7729598762 +18 53 03.548248479           ~ 1743 1

Query : 2019A&A...631L...4M

Basic data :
HD 209458b -- Extra-solar Planet
Origin of the objects types :

(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases

Other object types:
Pl (), Pl? (), * (HD)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
ICRS coord. (ep=J2000) :
22 03 10.7729598762 +18 53 03.548248479 (Optical) [ 0.0482 0.0448 90 ] A 2018yCat.1345....0G
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
FK4 coord. (ep=B1950 eq=1950) :
22 00 48.0726626668 +18 38 32.213648122 [ 0.0482 0.0448 90 ]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
  • ra dec : right ascension and declination (unit and frame defined according to your Output Options)
    Grey values are increasing the original precision due to the computation of frame transformations
  • (wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
  • [error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
    position angle (in degrees North celestial pole to East)
  • quality : flag of quality
    • E ≥ 10"
    • D : 1-10" (and some old data)
    • C : 0.1-1"
    • B : 0.01-0.1" + 2MASS, Tyc
    • A : VLBI, Hipparcos
  • bibcode : bibcode of the coordinates reference
Gal coord. (ep=J2000) :
076.7533286144181 -28.5269064048032 [ 0.0482 0.0448 90 ]
Syntax of proper motions is : "pm-ra pm-dec [error ellipse] quality bibcode"
  • pm-ra : mu-ra*cos(dec) (expressed in the ICRS system in mas/yr)
  • pm-dec : mu-dec (expressed in the ICRS system in mas/yr)
  • [error ellipse] : error major axis and minor axis (in mas), orientation angle (in deg)
  • quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
  • bibcode : bibcode of the proper motion reference
Proper motions mas/yr :
29.579 -17.890 [0.083 0.075 90] A 2018yCat.1345....0G
Syntax of parallax is : 'value quality [error] bibcode'
  • value : parallax value
  • quality : flag of quality (A=best quality -> E=worst quality, {� } =unknown quality)
  • [error] : mean error
  • bibcode : bibcode of the parallax reference
Parallaxes (mas):
20.6745 [0.0526] A 2018yCat.1345....0G
SIMBAD within arcmin
', {sourceSize:12, color:'#30a090'})); aladin.on('objectClicked', function(object) { var objName=object.data.MAIN_ID; aladin.showPopup(object.ra,object.dec,'',''+ objName+''); });" title="Show Simbad objects"> Overlay Simbad points in this preview
Back
All CDSPortal (CDSPortal)

Send to sendBySAMP sendBySAMP

sedIcon
within arcsec The VizieR photometry tool allows for easy visualization of photometry points extracted around the Simbad position from photometry-enabled catalogues in VizieR.
The search radius has to be specified by the user. It is currently limited to a maximum of 30 arcsec. It depends mostly on the precision or quality of the coordinates (SIMBAD and VizieR catalogs), the resolution of the images from which the sources were extracted, source extent, and source crowding.
Suggestions are: crowded field: 0.5 to 1.5 arcsec, 3 arcsec otherwise; uncertain coordinates (SIMBAD quality E or coordinates without reference): 5 to 30 arsec (risky!).
sed-help-icon
Some important notes on this object about identifications and objects associations.
notes:


Hierarchy : number of linked objects
whatever the membership probability is (see description here ) :

: 1 Display criteria :

The link on the acronym of the identifiers give access to the information for this acronym in the dictionary of nomenclature.
Identifiers (2) :
An access of full data is available using the icon Vizier near the identifier of the catalogue

HD 209458b NAME Osiris

References (1743 between 1850 and 2023) (Total 1743)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow new references on this object
                Reference summaries :

                from: to:

                 or select by : (not exhaustive, explanation here)


External archives :

Link by name to the catalogue in VizieR :

HD 209458b

Search by coordinates in Vizier (radius: 5 arcsec)


Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description .
Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .

Currently no annotations available

add an annotation to this object

report an error concerning the data of this object


To bookmark this query, right click on this link: simbad:objects in 2019A&A...631L...4M and select 'bookmark this link' or equivalent in the popup menu


2023.02.04-10:15:43

© Université de Strasbourg/CNRS

    • Contact