2020A&A...633A..86S


Query : 2020A&A...633A..86S

2020A&A...633A..86S - Astronomy and Astrophysics, volume 633A, 86-86 (2020/1-1)

Wind of change: retrieving exoplanet atmospheric winds from high-resolution spectroscopy.

SEIDEL J.V., EHRENREICH D., PINO L., BOURRIER V., LAVIE B., ALLART R., WYTTENBACH A. and LOVIS C.

Abstract (from CDS):


Context. The atmosphere of exoplanets has been studied extensively in recent years, making use of numerical models to retrieve chemical composition, dynamical circulation, or temperature from the data. One of the best observational probes in transmission is the sodium doublet thanks to its extensive cross-section. However, modelling the shape of planetary sodium lines has proven to be challenging. Models with different assumptions regarding the atmosphere have been employed to fit the lines in the literature, yet statistically-sound, direct comparisons of different models are needed to paint a clear picture.
Aims. We aim to compare different wind and temperature patterns, as well as to provide a tool to distinguish them based on their best fit for the sodium transmission spectrum of the hot Jupiter HD 189733b. We parametrise different possible wind patterns that have already been tested the in literature and introduce the new option of an upwards-driven vertical wind.
Methods. We construct a forward model where the wind speed, wind geometry, and temperature are injected into the calculation of the transmission spectrum. We embed this forward model in a nested sampling retrieval code to rank the models via their Bayesian evidence.
Results. We retrieve a best-fit to the HD 189733b data for vertical upward winds |vver(mean)|=40±4km/s at altitudes above 10–6bar. With the current data from HARPS, we cannot distinguish wind patterns for higher-pressure atmospheric layers.
Conclusions. We show that vertical upwards winds in the upper atmosphere provide a possible explanation for the broad sodium signature in hot Jupiters. We highlight other influences on the width of the doublet and we explore strong magnetic fields acting on the lower atmosphere as one possible origin of the retrieved wind speed.

Abstract Copyright: © ESO 2020

Journal keyword(s): planets and satellites: atmospheres - planets and satellites: individual: HD 189733b - techniques: spectroscopic - line: profiles - methods: data analysis

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 BD+01 316b Pl 01 46 31.8576707085 +02 42 02.033178181           ~ 155 0
2 WASP-49b Pl 06 04 21.4734612842 -16 57 55.108837741           ~ 50 1
3 HD 189733b Pl 20 00 43.7130382888 +22 42 39.071811263           ~ 1323 1

To bookmark this query, right click on this link: simbad:objects in 2020A&A...633A..86S and select 'bookmark this link' or equivalent in the popup menu


2023.02.01-19:36:16

© Université de Strasbourg/CNRS

    • Contact