C.D.S. - SIMBAD4 rel 1.7 - 2021.04.17CEST01:10:37

2020A&A...633L...1R - Astronomy and Astrophysics, volume 633, L1-1 (2020/1-1)

Apparent superluminal core expansion and limb brightening in the candidate neutrino blazar TXS 0506+056.


Abstract (from CDS):

Context. IceCube has reported a very-high-energy neutrino (IceCube-170922A) in a region containing the blazar TXS 0506+056. Correlated gamma-ray activity has led to the first high-probability association of a high-energy neutrino with an extragalactic source. This blazar has been found to be in a radio outburst during the neutrino event. Aims. Our goal is to probe the sub-milliarcsecond properties of the radio jet right after the neutrino detection and during the further evolution of the radio outburst. Methods. We performed target of opportunity observations at 43GHz frequency using very long baseline interferometry imaging, corresponding to 7mm in wavelength, with the Very Long Baseline Array two and eight months after the neutrino event. Results. We produced two images of the radio jet of TXS 0506+056 at 43GHz with angular resolutions of (0.2x1.1)mas and (0.2x0.5)mas, respectively. The source shows a compact, high brightness temperature core, albeit not approaching the equipartition limit and a bright and originally very collimated inner jet. Beyond approximately 0.5mas from the millimeter-VLBI core, the jet loses this tight collimation and expands rapidly. During the months after the neutrino event associated with this source, the overall flux density is rising. This flux density increase happens solely within the core. Notably, the core expands in size with apparent superluminal velocity during these six months so that the brightness temperature drops by a factor of three despite the strong flux density increase.Conclusions. The radio jet of TXS 0506+056 shows strong signs of deceleration and/or a spine-sheath structure within the inner 1mas, corresponding to about 70-140pc in deprojected distance, from the millimeter-VLBI core. This structure is consistent with theoretical models that attribute the neutrino and gamma-ray production in TXS 0506+056 to interactions of electrons and protons in the highly relativistic jet spine with external photons originating from a slower moving jet region. Proton loading due to jet-star interactions in the inner host galaxy is suggested as the possible cause of deceleration.

Abstract Copyright: © E. Ros et al. 2019

Journal keyword(s): radiation mechanisms: non-thermal - neutrinos - techniques: interferometric - radio continuum: galaxies - quasars: individual: TXS 0506+056

CDS comments: Cores not in SIMBAD.

Simbad objects: 5

goto Full paper

goto View the reference in ADS

Number of rows : 5

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 Mrk 1501 Sy1 00 10 31.0058529490 +10 58 29.505989476   15.96 15.40 12.22   ~ 658 0
2 IC 35 G 00 37 39.8837153586 +10 21 28.487874609   15.00       ~ 41 0
3 QSO J0509+0541 BLL 05 09 25.9645434784 +05 41 35.333636817 15.32 14.95 14.78 15.12   ~ 267 2
4 IceCube-170922A ev 05 09.7 +05 43           ~ 80 0
5 QSO B1424-41 QSO 14 27 56.29756536 -42 06 19.4375991   18.48 17.7 16.30   ~ 387 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2020A&A...633L...1R and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact