2020A&A...634A..37M


C.D.S. - SIMBAD4 rel 1.7 - 2021.01.24CET01:03:17

2020A&A...634A..37M - Astronomy and Astrophysics, volume 634A, 37-37 (2020/2-1)

Determining the 56Ni distribution of type Ia supernovae from observations within days of explosion.

MAGEE M.R., MAGUIRE K., KOTAK R., SIM S.A., GILLANDERS J.H., PRENTICE S.J. and SKILLEN K.

Abstract (from CDS):

Recent studies have shown how the distribution of 56Ni within the ejected material of type Ia supernovae can have profound consequences on the observed light curves. Observations at early times can therefore provide important details on the explosion physics in thermonuclear supernovae, which are poorly constrained. To this end, we present a series of radiative transfer calculations that explore variations in the 56Ni distribution. Our models also show the importance of the density profile in shaping the light curve, which is often neglected in the literature. Using our model set, we investigate the observations that are necessary to determine the 56Ni distribution as robustly as possible within the current model set. We find that this includes observations beginning at least ∼14-days before B-band maximum, extending to approximately maximum light with a relatively high (≤3-day) cadence, and in at least one blue and one red band (such as B and R, or g and r) are required. We compare a number of well-observed type Ia supernovae that meet these criteria to our models and find that the light curves of ∼70-80% of objects in our sample are consistent with being produced solely by variations in the 56Ni distributions. The remaining supernovae show an excess of flux at early times, indicating missing physics that is not accounted for within our model set, such as an interaction or the presence of short-lived radioactive isotopes. Comparing our model light curves and spectra to observations and delayed detonation models demonstrates that while a somewhat extended 56Ni distribution is necessary to reproduce the observed light curve shape, this does not negatively affect the spectra at maximum light. Investigating current explosion models shows that observations typically require a shallower decrease in the 56Ni mass towards the outer ejecta than is produced for models of a given 56Ni mass. Future models that test differences in the explosion physics and detonation criteria should be explored to determine the conditions necessary to reproduce the 56Ni distributions found here.

Abstract Copyright: © ESO 2020

Journal keyword(s): supernovae: general - radiative transfer

VizieR on-line data: <Available at CDS (J/A+A/634/A37): list.dat lc/* dp/*>

Simbad objects: 35

goto Full paper

goto View the reference in ADS

Number of rows : 35

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 PTF 10accd SN* 02 13 30.40 +46 41 37.2           ~ 4 0
2 iPTF 13ebh SN* 02 21 59.98 +33 16 13.7           SNIa 29 0
3 LSQ 13cpk SN* 02 31 03.80 -20 08 49.6           SNIa 3 0
4 SN 2009ig SN* 02 38 11.62 -01 18 45.3           SNIa 120 1
5 LSQ 12gpw SN* 03 12 58.0 -11 42 40           SNIapec 7 0
6 PTF 09dsy SN* 03 33 22.10 -04 59 55.2           ~ 3 0
7 SN 2012fr SN* 03 33 35.99 -36 07 37.7           SNIa 101 1
8 SN 2013gy SN* 03 42 16.88 -04 43 18.5           SNIa 28 1
9 iPTF 13dge SN* 05 03 35.08 +01 34 17.4           SNI 7 0
10 LSQ 12fxd SN* 05 22 16.99 -25 35 47.0           SNIa 11 1
11 SN 2015F SN* 07 36 15.76 -69 30 23.0           SNIa 50 1
12 SN 2018oh SN* 09 06 39.592 +19 20 17.47           ~ 32 0
13 SN 2010jn SN* 09 37 29.95 +23 09 38.8   17.29 16.85     SNIa 31 1
14 LSQ 12hzj SN* 09 59 12.43 -09 00 08.3           SNIa 10 1
15 LSQ 13ry SN* 10 32 48.00 +04 11 51.4           SNIa 9 0
16 SN 2012ht SN* 10 53 22.75 +16 46 34.9           SNIa 40 1
17 SN 2016coj SN* 12 08 06.80 +65 10 37.9           SNIa 21 0
18 SN 2016jhr SN* 12 18 19.850 +00 15 17.38           SNIa 14 0
19 SN 2012cg SN* 12 27 12.83 +09 25 13.2           SNIa 138 1
20 ASASSN -14lp SN* 12 45 09.10 -00 27 32.4           SNIa 46 0
21 PTF 10duz SN* 12 51 39.50 +14 26 18.7           ~ 6 0
22 PTF 11hub SN* 13 12 59.540 +47 27 40.32       19.42   SNIa 4 0
23 PTF 12emp SN* 13 13 53.66 +34 06 59.7           SNIa 3 0
24 PTF 10hml SN* 13 19 49.70 +41 59 01.6           ~ 5 0
25 iPTF 14bdn SN* 13 30 44.88 +32 45 42.4           SNIa 15 0
26 SN 2016bln SN* 13 34 45.492 +13 51 14.30           SNIa 32 0
27 SN 2011fe SN* 14 03 05.711 +54 16 25.22   10.12 10.06     SNIa 527 1
28 SN 2017cbv SN* 14 32 34.420 -44 08 02.74           SNIa 52 0
29 SN 2017erp SN* 15 09 14.810 -11 20 03.20           SNIa 15 0
30 PTF 12gdq SN* 15 11 35.31 +09 42 34.0           SNIa 5 0
31 SN 2013cv SN* 16 22 43.16 +18 57 35.6           SNIaPec 16 1
32 PTF 10iyc SN* 17 09 21.80 +44 23 35.9           ~ 5 0
33 KSN 2011b SN* 19 20 37.540 +38 15 08.34           SNIa 12 0
34 KSN 2012a SN* 19 33 30.107 +45 15 01.29           SNIa 10 0
35 SN 2013dy SN* 22 18 17.60 +40 34 09.6           SNIa 78 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2020A&A...634A..37M and select 'bookmark this link' or equivalent in the popup menu


2021.01.24-01:03:17

© Université de Strasbourg/CNRS

    • Contact